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Chapter 1

Introduction

1.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Some facts from convex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Convex optimization: sub-gradient descent . . . . . . . . . . . . . . . . . . . . 6

1.4 Convex optimization: mirror descent and Nesterov’s dual averaging . . . . . . . 10

1.5 Zero-order optimization of Lipschitz functions . . . . . . . . . . . . . . . . . . . 13

1.6 Zero-order optimization of highly smooth functions . . . . . . . . . . . . . . . . 16

1.7 Distributed optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.8 Contextual bandits and fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.9 Résumé en français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.10 Preview of the contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.1 Optimization

Optimization is a branch of study where the goal is to estimate an extremal quantity associated

with some function. Examples of such extremal quantities include a minimizer, a maximizer,

a saddle point, and other. In this section, we introduce and study one of the most common

models where the extremal quantity is a minimizer of a function f : Rd → R in a closed, convex

subset Θ of Rd. Namely, we are interested in estimating

x∗ ∈ argmin
x∈Θ

f(x) , (1.1)

by some potentially random x̂, which guarantees a small optimization error, i.e.

E [f(x̂)]− f(x∗) . (1.2)

3



where the expectation in (1.2) is with respect to the probability distribution of x̂. Of course,

without specifying the type of information that we can access about the function f , the above

stated problem is hopeless. Below, we present a rather general query model, which includes

many popular observation schemes.

Consider an iterative procedure, such that at each time t ≥ 1, for any choice x ∈ Rd of the

learner, the nature outputs a noisy information about the function, encoded by the link function

F (x, ξ(x)), where ξ(x) is a measurement noise. Formally, there exists F : Rd × Rℓ1 → Rℓ2 ,

for some positive integers ℓ1, ℓ2, such that for every vector x ∈ Rd selected by the learner, the

nature samples noise variable ξ(x) and returns F (x, ξ(x)) to the learner.

The above framework is rather abstract and the concrete problem and estimation strategy

will depend on the form of the link function F . Let us provide some examples of link functions

F and relate them to the well-known settings in the optimization literature. First, we provide

the definition for the sub-gradient of a function.

Definition 1.1.1. Let f : Rd → R, and fix x ∈ Rd. We call ∂f(x) ⊆ Rd the set of sub-gradients

(or sub-differentials) of f at point x, if for any g ∈ ∂f(x), and y ∈ Rd, we have

f(x)− f(y) ≤ ⟨g,x − y⟩ .

If f is a convex function, the above definition is a generalization of the gradient of f .

Particularly, if f is convex and differentiable at x ∈ Rd, then ∂f(x) = {∇f(x)} (see Lemma

1.2.2).

Example 1.1.2 (First-order optimization). We call an optimization problem a first-order prob-

lem if the link function F : Rd×Rd → Rd and the evaluation at point x ∈ Rd contains information

about a sub-gradient of the function at point x. The simplest case is when F (x, ξ(x)) ∈ ∂f(x).
In the stochastic setting with a differentiable objective function f , the most well-know case

is E[F (x, ξ(x))] = ∇f(x) (Robbins and Monro, 1951). A particular example is the additive

noise model, where F (x, ξ(x)) = ∇f(x) + ξ(x).

Example 1.1.3 (Zero-order optimization). An optimization problem is called a zero-order prob-

lem if for any x ∈ Rd, the link function F : Rd ×R → R provides information about the function

values. As an example one can consider the additive noise model F (x, ξ(x)) = f(x) + ξ(x).
This is the main case studied below. Throughout this thesis, whenever we mention that the

learner has access to zero-order information we are referring to F (x, ξ(x)) = f(x) + ξ(x).

In the following three sections, we provide a brief background on convex analysis and

convex optimization.

Notation and conventions. We let ⟨·, ·⟩ be the standard inner product in Rd, and for q ∈ [1,∞],

we denote by ∥·∥q the ℓq-norm. For k ≥ 1, we let [k] the set of all the positive integers that are

less or equal to k. For q ∈ [1,∞] we introduce the open ℓq-ball and ℓq-sphere respectively as

Bd
q ≜

{
x ∈ Rd : ∥x∥q < 1

}
and ∂Bd

q ≜
{

x ∈ Rd : ∥x∥q = 1
}

.

4



For x = (x1, . . . , xd) ∈ Rd, we write x ≥ 0 if xi ≥ 0, for all i ∈ [d]. Furthermore, for d-

dimensional multi-index m = (m1, . . . ,md), where mj ≥ 0 are integers, we define |m| =

m1 + . . . +md, m! = m1! . . .md!, and for any u ∈ Rd, let um = um1
1 . . . umd

d . We denote the

differentiation operator as Dm = ∂|m|

∂u
m1
1 ...∂u

md
d

. Also, throughout this manuscript we adopt the

convention that 1/∞ = 0, and 0 log(0) = 0.

1.2 Some facts from convex analysis

In this section, we briefly recall some basic facts from convex analysis.

Definition 1.2.1. We call f : Rd → R a convex function, if for any x,y ∈ Rd and λ ∈ [0, 1], it

satisfies

f (λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) .

One of the main reasons why convex functions are interesting from an algorithmic point

of view is that a local property of these functions can be translated to global phenomena.

We illustrate this bridge between local and global properties of convex functions in the two

following lemmas.

Lemma 1.2.2. Let f : Rd → R be a convex function. This is true if and only if, for any x ∈ Rd,

∂f(x) ̸= ∅. Furthermore, if f is differentiable at x, then ∂f(x) = {∇f(x)}.

Proof. The first and second statement of lemma can be found, respectively, in (Bubeck, 2015,

Proposition 1.1) and (Polyak, 1987, Chapter 5, Lemma 5).

We will distinguish between unconstrained minimization which corresponds to Θ = Rd in

(1.1), and constrained minimization when Θ in (1.1) is a compact and convex set. One of the

most useful properties of a convex function in the setting of unconstrained optimization is the

fact that a local minimum is the global minimum. Also, note that for any convex function f , we

have x∗ ∈ argminx∈Rd f(x), if and only if 0 ∈ ∂f(x∗). Now, assume that f is a convex and

differentiable function. Then by Lemma 1.2.2, we deduce that

x∗ ∈ argmin
x∈Rd

f(x) if and only if ∇f(x∗) = 0 .

A general version of optimality condition is stated in the following lemma, which is valid for a

closed and convex Θ.

Lemma 1.2.3. [(Nesterov, 2018, Theorem 3.1.24)] Let Θ be a closed and convex subset of

Rd. Then, for convex function f : Rd → R we have

x∗ ∈ argmin
x∈Θ

f(x)
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if and only if

∂f(x∗) ∩ CΘ(x∗) ̸= ∅ ,

where we introduced the cone CΘ(x∗) = {g ∈ Rd : ⟨g,y − x∗⟩ ≥ 0, for all y ∈ Θ}.

1.3 Convex optimization: sub-gradient descent

First, we introduce the sub-gradient descent algorithm, which is the most fundamental al-

gorithm in convex optimization. An initial version of gradient descent can be traced back

to (Cauchy, 1847), which had been defined for unconstrained optimization of differentiable

functions. Here, we consider a more general (projected and with sub-gradients) version of

the method. Starting from an initial point x1, sub-gradient descent is the following iterative

procedure

xt+1 = ProjΘ (xt − ηtgt) , t = 1, 2, . . . , (1.3)

where gt ∈ ∂f(xt), ηt > 01. Here and in what follows Θ is a closed and convex set and we

introduce ProjΘ(x) = argminy∈Θ ∥x − y∥2. If f is differentiable and convex, by Lemma 1.2.2

we have gt = ∇f(xt) and one can show that for the updates in (1.3), we have f(xt+1) ≤ f(xt).

The word descent in the name of the algorithm is due to this property. However, in the current

formulation of the algorithm where we use gt ∈ ∂f(xt), there is no such guarantee and the

function values may increase (see (Orabona, 2019, Example 6.1.)). In this thesis, our main

object of interest is a generalization of (1.3), where the updates are as follows

xt+1 = ProjΘ (xt − ηtg̃t) , t = 1, 2, . . . , (1.4)

and g̃t is a random vector in Rd that the learner forms at round t based on zero or first-order

information as an alternative for gt ∈ ∂f(xt). In the following lemma, we state a bound on the

optimization error of Algorithm (1.4) when f is a convex function.

Lemma 1.3.1. Let f : Rd → R be a convex function, and assume that xt is generated by (1.4)

Then, for t ≥ 1, we have

E [f(xt)− f(x∗)] ≤ 1

2ηt

(
E
[
∥xt − x∗∥22

]
−E

[
∥xt+1 − x∗∥22

])
+
ηt
2
E
[
∥g̃t∥

2
2

]
(1.5)

+E

[
inf

gt∈∂f(xt)
⟨gt −E [g̃t|xt] ,xt − x∗⟩

]
.

1Throughout the introduction, we adopt the convention that ηt is non-random. However, this convention is not
valid in Chapter 4, in which we study an adaptive scheme in the context of online learning.
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Proof. Since f is a convex function, for any gt ∈ ∂f(xt) we have

f(xt)− f(x∗) ≤ ⟨gt,xt − x∗⟩ (1.6)

= ⟨gt −E [g̃t|xt] ,xt − x∗⟩+ ⟨E [g̃t|xt] ,xt − x∗⟩ .

Furthermore, for the term ⟨E [g̃t|xt] ,xt − x∗⟩ by the definition of (1.4), we have

⟨E [g̃t|xt] ,xt − x∗⟩ = 1

ηt
⟨xt − (xt − ηtE [g̃t|xt]) ,xt − x∗⟩ (1.7)

=
1

2ηt
E
[
∥xt − x∗∥22 + η2t ∥g̃t∥

2
2 − ∥(xt − ηtg̃t)− x∗∥22 |xt

]
,

where the last display is obtained by the inequality 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2, for all

a, b ∈ Rd. On the other hand, by the contraction property of the Euclidean projection ProjΘ(·),
we get

∥(xt − ηtg̃t)− x∗∥22 ≥ ∥xt+1 − x∗∥22 . (1.8)

By combining (1.6), (1.7) and (1.8) we deduce that

f(xt)− f(x∗) ≤ 1

2ηt

(
∥xt − x∗∥22 −E

[
∥xt+1 − x∗∥22 |xt

])
(1.9)

+ ≤ ⟨gt −E [g̃t|xt] ,xt − x∗⟩+ ηt
2
E
[
∥g̃t∥

2
2 |xt

]
.

Recall that (1.9) is valid for any gt ∈ ∂f(xt). Taking infimum over all gt ∈ ∂f(xt), and total

expectation of both sides of the inequality yields

E [f(xt)− f(x∗)] ≤ 1

2ηt

(
E
[
∥xt − x∗∥22

]
−E

[
∥xt+1 − x∗∥22

])
+
ηt
2
E
[
∥g̃t∥

2
2

]
+E

[
inf

gt∈∂f(xt)
⟨gt −E [g̃t|xt] ,xt − x∗⟩

]
.

As an application of the bound provided in (1.5), let us consider the case where at each

round t ∈ [T ] the learner has access to a random vector g̃t ∈ Rd, such that

i) E[g̃t|xt] ∈ ∂f(xt) almost surely , and ii) E[∥g̃t∥
2
2] ≤ L2, for L > 0 . (1.10)

Then, it follows from (1.5) that

E [f(xt)− f(x∗)] ≤ 1

2ηt

(
E
[
∥xt − x∗∥22

]
−E

[
∥xt+1 − x∗∥22

])
+
ηt
2
L2 . (1.11)

Moreover, assume that η1 = · · · = ηT = η, and x1 is non-random. By summing up both sides
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of (1.11) from 1 to T we get

T∑
t=1

E [f(xt)− f(x∗)] ≤
∥x1 − x∗∥22

2η
+
η

2
L2 .

In the case of constrained optimization, we have ∥x1 − x∗∥2 ≤ R, whereR = maxx,y∈Θ ∥x − y∥2.
By letting η = R

L
√
T

, we get

E [f(x̄T )− f(x∗)] ≤ 1

T

T∑
t=1

E [f(xt)− f(x∗)] ≤ RL√
T

,

where x̄T = 1
T

∑T
t=1 xt, and we have used the convexity of f . Similarly, in the case of uncon-

strained optimization by letting η = 1
L
√
T

, we get

E [f(x̄T )− f(x∗)] ≤ L

2
√
T

(
∥x1 − x∗∥22 + 1

)
.

We note that here we take an averaged version x̄T of sub-gradient descent. Such averaged

techniques were first introduced by Polyak and Juditsky (1992), and they are widely used now.

Now, assume that at each round t ∈ [T ], the learner has access to a non-random vector

g̃t ∈ ∂f(xt). Then condition i) in obviously (1.10) holds. However, condition ii) in (1.10) is a

further assumption on the objective function f .

Definition 1.3.2. For L > 0, q ∈ [1,∞], we call f : Rd → R a L-Lipschitz function with respect

to ∥·∥q, if for any x,y ∈ Rd, it satisfies

|f(x)− f(y)| ≤ L ∥x − y∥q .

One can conclude that if f is a L-Lipschitz function, with respect to ∥·∥q, then for any

x ∈ Rd and g ∈ ∂f(x), we have ∥g∥q∗ ≤ L, where 1/q∗ + 1/q = 1. Therefore, assuming that f

is a L-Lipschitz function with respect to ∥·∥2 is a sufficient condition that ensures property ii)
in (1.10). We summarize these observations in the following corollary.

Corollary 1.3.3. Let f : Rd → R be a convex and L-Lipschitz function with respect to ∥·∥2.
Assume that at each round t ∈ [T ] the learner has access to a deterministic vector gt ∈ ∂f(xt).

Let xt to be generated by the updates in (1.4), with ηt = 1
L
√
T

, for t ∈ [T ]. Then,

f(x̄T )− f(x∗) ≤ L

2
√
T

(
∥x1 − x∗∥22 + 1

)
.

Moreover, in the case of constrained optimization with R = maxx,y∈Θ ∥x − y∥, by letting ηt =
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R
L
√
T

we get

f(x̄T )− f(x∗) ≤ RL√
T

.

Let us pursue our analysis with a more restrictive assumption on the curvature of the

objective function f .

Definition 1.3.4. For α > 0, we call f : Rd → R an α-strongly convex function if for any

x,y ∈ Rd and g ∈ ∂f(x) it satisfies

f(y) ≥ f(x)− ⟨g,x − y⟩+ α

2
∥x − y∥2 .

Clearly, any α-strongly convex function is convex. The following lemma is a result similar to

Lemma 1.3.1, which gives a tighter upper bound for the optimization error when f is strongly

convex.

Lemma 1.3.5. Let f : Rd → R be an α-strongly convex function. Assume that xt is generated

by (1.4). Then, we have

E [f(xt)− f(x∗)] ≤ 1

2ηt

((
1− ηtα

2

)
E
[
∥xt − x∗∥22

]
−E

[
∥xt+1 − x∗∥22

])
(1.12)

+
ηt
2
E
[
∥g̃t∥

2
2

]
+

1

α
E

[
inf

gt∈∂f(xt)
∥gt −E [g̃t|xt]∥22

]
.

Proof. Since f is an α-strongly function, for any gt ∈ ∂f(xt) we can write

f(xt)− f(x∗) ≤ ⟨gt,xt − x∗⟩ − α

2
∥xt − x∗∥22

= ⟨gt −E [g̃t|xt] ,xt − x∗⟩+ ⟨E [g̃t|xt] ,xt − x∗⟩ − α

2
∥xt − x∗∥22

≤ 1

α
∥gt −E [g̃t|xt]∥22 + ⟨E [g̃t|xt] ,xt − x∗⟩ − α

4
∥xt − x∗∥22 ,

where the last inequality follows from the fact that

⟨gt −E [g̃t|xt] ,xt − x∗⟩ ≤ 1

α
∥gt −E [g̃t|xt]∥22 +

α

4
∥xt − x∗∥22 .

Using (1.7), and a similar argument as the one leading to (1.9) we find:

f(xt)− f(x∗) ≤ 1

2ηt

((
1− ηtα

2

)
∥xt − x∗∥22 −E

[
∥xt+1 − x∗∥22 |xt

])
+

1

α
∥gt −E [g̃t|xt]∥22+

+
ηt
2
E
[
∥g̃t∥

2
2 |xt

]
.

By taking infimum over gt ∈ ∂f(xt) and expectations of both sides we conclude the proof.

Again as an example, assume that at each round the learner has access to a vector

9



g̃t ∈ Rd such that (1.10) holds. Then, by (1.12) we can write

E [f(xt)− f(x∗)] ≤ 1

2ηt

((
1− ηtα

2

)
E
[
∥xt − x∗∥22

]
−E

[
∥xt+1 − x∗∥22

])
+
ηt
2
L2 .

Assigning ηt = 4
α(t+1) , and multiplying both sides by t yields

E [t (f(xt)− f(x∗))] ≤ α

8

(
t(t− 1)E

[
∥xt − x∗∥22

]
− t(t+ 1)E

[
∥xt+1 − x∗∥22

])
+

2L2

α
.

Summing both sides from 1 to T and dividing by T (T+1)
2 implies

E [f(x̄T )− f(x∗)] ≤ 2

T (T + 1)

T∑
t=1

E [t (f(xt)− f(x∗))] ≤ 4L2

α(T + 1)
,

where we introduced the weighted average estimator x̄T = 2
T (T+1)

∑T
t=1 txt. From the above

discussion, we conclude that for Algorithm (1.4), the optimization error of a convex Lipschitz in

∥·∥2 function is of the order 1/
√
T and for a strongly convex Lipschitz in ∥·∥2 function it scales

as 1/T . These are classical results in optimization. We refer to (Bubeck, 2015, Chapter 4) for

references and historical review.

In the next section, we present a generalization of the algorithm that is provided in (1.3),

which is adaptive to the geometry induced by the function f .

1.4 Convex optimization: mirror descent and Nesterov’s dual av-
eraging

First, we place ourselves in the setting of first order optimization where at each round the

learner has access to a deterministic vector which is a sub-gradient of convex function f at the

current update. Namely, at round t the learner observes a deterministic vector F (xt, ξ(xt)) ∈
∂f(xt) and defines g̃t = F (xt, ξ(xt)). Note that the bounds that we derived in (1.5) and (1.12)

contain the term E
[
∥g̃t∥

2
2

]
. As we outlined in Lemma 1.3.3, if the objective function f is L-

Lipschitz the term ∥g̃t∥
2
2 can be uniformly bounded. Now, assume that f is L-Lipschitz with

respect to the ℓ1-norm, i.e., for any x,y ∈ Rd we have

|f(x)− f(y)| ≤ L ∥x − y∥1 .

It implies that ∥g̃t∥∞ ≤ L and consequently the only guarantee that we can get for ∥g̃t∥2 is

that it is uniformly bounded by
√
dL, which leads to a sub-optimal rate for the optimization

error in terms of dependency on the dimension d. In other words, the sub-gradient descent

algorithm (1.3) cannot be adopted to the underlying geometry that is induced by the objective

function f , and it is suitable only if f is L-Lipschitz with respect to ℓ2-norm. In this section

we introduce the mirror descent algorithm that is initially proposed by Nemirovsky and Yudin

10



(1983) to overcome this issue. From now on in this chapter, we assume that the objective

function f is L-Lipschitz with respect to the ℓq-norm, for some q ∈ [1,∞].

Let Θ̃ ⊆ Rd be an open set such that Θ ⊆ Θ̃. Assume that function V : Θ̃ → R is such that

the following conditions hold.

1. V is differentiable on Θ.

2. V is a 1-strongly convex function on Θ with respect to the ∥·∥q norm, for some q ∈ [1,∞]

i.e., for any x,y ∈ Θ, we have

V (x) ≥ V (y) + ⟨∇V (y),x − y⟩+ 1

2
∥x − y∥2q .

We define the Bergman divergence function with respect to V as BV : Θ×Θ → R such that

BV (x;y) = V (x)− V (y)− ⟨∇V (y),x − y⟩ .

Note that since we assume that V is 1-strongly convex with respect to the ∥·∥q norm we have

BV (x,y) ≥
1

2
∥x − y∥2q .

The mirror descent algorithm is the following iterative procedure

xt+1 =

(
argmin

x∈Θ
ηt⟨gt,x⟩+BV (x;xt)

)
, t ∈ [T ] . (1.13)

For example, let V (x) = 1
2 ∥x∥22. Then, BV (x;y) = 1

2 ∥x − y∥22, and for (1.13) we can write

xt+1 = argmin
x∈Θ

(
ηt⟨gt,x⟩+

1

2
∥xt − x∥22

)
= argmin

x∈Θ
∥xt − ηtgt − x∥22 = ProjΘ (xt − ηtgt) .

Therefore, we conclude that the sub-gradient descent algorithm (1.3) is a special case of

mirror descent (1.13). Now again assume that, at reach round t ∈ [T ], the learner has access

to a random vector g̃t ∈ Rd, and consider the following updates

xt+1 = argmin
x∈Θ

(ηt⟨g̃t,x⟩+BV (x;xt)) . (1.14)

In the following lemma we outline the performance of (1.14) when f is a convex function.

Lemma 1.4.1. Assume that f is a convex function, and for t ∈ [T ] let xt be generated by
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(1.14) with ηt > 0 such that ηt+1 ≤ ηt. Then, we have

T∑
t=1

E [f(xt)− f(x∗)] ≤ max
t∈[T ]

E [BV (x∗;xt)]

ηT
+

T∑
t=1

E

[
inf

gt∈∂f(xt)
⟨gt −E [g̃t|xt] ,xt − x∗⟩

]

+
1

2

T∑
t=1

ηtE
[
∥g̃t∥

2
q∗

]
, (1.15)

where q∗ is such that 1/q∗+1/q = 1. Furthermore, if η1 = · · · = ηT = η, and x1 is non-random,

then

T∑
t=1

E [f(xt)− f(x∗)] ≤ BV (x∗;x1)

η
+

T∑
t=1

E

[
inf

gt∈∂f(xt)
⟨gt −E [g̃t|xt] ,xt − x∗⟩

]

+
η

2

T∑
t=1

E
[
∥g̃t∥

2
q∗

]
. (1.16)

Proof. Since f is convex we can write

T∑
t=1

E [f(xt)− f(x∗)] ≤
T∑
t=1

E [⟨E [g̃t|xt] ,xt − x∗⟩] +
T∑
t=1

E

[
inf

gt∈∂f(xt)
⟨gt −E [g̃t|xt] ,xt − x∗⟩

]
.

(1.17)

We conclude the proof by using (Orabona, 2019, Theorem 6.8.).

Note that in the above bound, we get E
[
∥g̃t∥

2
q∗

]
instead of E

[
∥g̃t∥

2
2

]
, that appeared in

(1.5). Thus, for any q ∈ [1,∞], if f is a L-Lipschitz function with respect to ∥·∥q, it is reasonable

to take V that is strongly convex with respect to the ∥·∥q-norm. Some classical examples of

functions V are as follows.

Example 1.4.2. Let Θ be a convex subset of Rd, and q ∈ (1, 2]. Then, V (x) = 1
2(q−1) ∥x∥2q is

1-strongly convex with respect to ∥·∥q and differentiable on Θ.

Example 1.4.3. Let Θ = {x ∈ Rd : ∥x∥1 = 1, x ≥ 0}. Then, V (x) =
∑d

i=1 xi log(xi) is

1-strongly convex with respect to ∥·∥1 and differentiable on Θ. Moreover, for any x,y ∈ Θ, we

have BV (x;y) =
∑d

i=1 xi log(
xi
yi
).

If argminx∈Θ̃ V (x) ∈ Θ, then by assigning x1 = argminx∈Θ̃ V (x), the term BV (x∗;x1) in

(1.16) becomes equal to V (x∗)−minx∈Θ V (x). Then, in the setting of Example 1.4.2 the term

BV (x∗;x1) = V (x∗) − minx∈Θ V (x) is bounded by a constant independent of the dimension,

and in Example 1.4.3, we have BV (x∗;x1) = V (x∗) −minx∈Θ V (x) ≤ log(d). However, Algo-

rithm (1.14) has a drawback in the case of varying ηt. In Example 1.4.3 there is no guarantee

that xt is bounded away from the vertices of Θ, which means that BV (x∗;xt) can explode.

Therefore, (1.14) is not useful for this example. On the other hand, in the setting of Example

1.4.2, if Θ is not bounded, once more the term in maxt∈[T ]E [BV (x∗;xt)] in (1.15) might be big
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as there is no uniform upper bound on the norm of xt. This drawback is crucial in the schemes

where the learner is not aware of the parameter T or the Lipschitz constant L since in these

schemes one typically needs to use varying ηt. Particularly, in the context of online learning

(Orabona and Pál, 2016, Section 4) proved that mirror descent with varying ηT can achieve

a linear regret for the aforementioned examples. To overcome this issue, we introduce Nes-

terov’s dual averaging algorithm (see (Orabona, 2019, Section 7.13) for a historical overview)

that shares the spirit of mirror descent, in the sense of adaptivity to the geometry of f .

Let V : Θ → R satisfy the following conditions.

1. V is semi-lower continuous.

2. V is a 1-strongly convex function on Θ with respect to ∥·∥q, for q ∈ [1,∞].

Equipped with such function V consider the following iterative procedure

xt+1 = argmin
x∈Θ

(
ηt

t∑
k=1

⟨g̃t,x⟩+ V (x)

)
, (1.18)

where ηt > 0 and g̃t is a random vector that is received by the learner at round t. In the

following lemma we state a bound for the optimization error of Algorithm (1.18).

Lemma 1.4.4. Assume that f : Rd → R is a convex function. Then, for Algorithm (1.18) with

ηt > 0 such that ηt+1 ≤ ηt and non-random x1 we have

T∑
t=1

E [f(xt)− f(x∗)] ≤ V (x∗)−minx∈Θ V (x)
ηT

+
1

2

T∑
t=1

ηtE
[
∥g̃t∥

2
q∗

]
(1.19)

+
T∑
t=1

E

[
inf

gt∈∂f(xt)
⟨gt −E [g̃t|xt] ,xt − x∗⟩

]
,

where 1/q∗ + 1/q = 1.

This lemma follows from (1.17) and (Orabona, 2019, Corollary 7.9.). Note that here we

used the fact that ηt is non-random, for t ∈ [T ].

1.5 Zero-order optimization of Lipschitz functions

In this section, we assume that the objective function f is convex, and the link function pro-

vides only noisy zero-order information. Particularly, we assume that for any x ∈ Rd we have

F (x, ξ(x)) = f(x) + ξ, where and E[ξ2] ≤ σ2 for σ > 0. Consider the updates in (1.18), and

assume that for any h > 0, there exists a surrogate function fh(x) : Rd → R, such that fh is

convex and differentiable, and for any x ∈ Rd we have

0 ≤ fh(x)− f(x) ≤ ∆, and E [g̃t|xt] = ∇fh(xt) almost surely ,
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where ∆ > 0. Then, by using the bound that is provided by (1.19), we get

T∑
t=1

E [fh(xt)− fh(x∗)] ≤ V (x∗)−minx∈Θ V (x)
ηT

+
1

2

T∑
t=1

ηtE
[
∥g̃t∥

2
q∗

]
.

and accordingly

T∑
t=1

E [f(xt)− f(x∗)] ≤ V (x∗)−minx∈Θ V (x)
ηT

+
1

2

T∑
t=1

ηtE
[
∥g̃t∥

2
q∗

]
+ T∆ .

Thus, if ∆ is small enough a meaningful bound for the optimization error of x̄T = 1
T

∑T
t=1 xt

follows if we provide an adequately tight upper bound for E[∥g̃t∥
2
q∗ ], and assign properly the

step sizes ηt for t ∈ [T ]. The idea of using a particular surrogate function fh(·) is first pro-

posed by (Nemirovsky and Yudin, 1983, Chapter 9.3.2) as an exercise. Below we provide two

examples of g̃t and fh(·), where in the construction of g̃t we only use zero-order information.

Gradient estimator based on ℓ2-randomization. At round t ∈ [T ], let ht > 0, and let ζ◦t
be a random vector uniformly distributed on ∂Bd

2 . Assume that we receive the link function’s

feedback at the two following points

yt = F (xt − htζ
◦
t , ξt), and y′t = F (xt + htζ

◦
t , , ξ

′
t) ,

where ξt and ξ
′
t are noises. Construct the gradient estimator

g̃t =
d

2ht

(
yt − y′t

)
ζ◦t . (1.20)

An initial version of this estimator, that is constructed only based on one point feedback is

proposed by Nemirovsky and Yudin (1983) and further studied by Flaxman et al. (2005). The

fact that E[g̃t|xt] = ∇fh(xt), where such that for any x ∈ Rd,

fh(x) = E [f(x + hU)] ,

and U is uniformly distributed in Bd
2 is stated without proof in Nemirovsky and Yudin (1983)

and Flaxman et al. (2005). It is referred to Stokes’ theorem in Flaxman et al. (2005). The

precise version of Stokes’ theorem needed for the estimator to work is stated and proved in

Chapter 4. The current form of (1.20) is introduced by Agarwal et al. (2010), and it is further

analyzed by Duchi et al. (2015); Novitskii and Gasnikov (2021); Shamir (2017). Furthermore,

for q = 1, 2, the bound on E
[
∥g̃t∥

2
q∗

]
, with g̃t given in (1.20) is obtained by (Shamir, 2017,

Corollaries 2 and 3) for the functions f that are L-Lipschitz with respect to ∥·∥q.
Gradient estimator based on ℓ1-randomization. At round t ∈ [T ], let ht > 0, and let ζ⋄t

be a random vector uniformly distributed on ∂Bd
1 . Assume that we receive the link function’s
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feedback at the two following points

yt = F (xt − htζ
⋄
t , ξt), and y′t = F (xt + htζ

⋄
t , ξ

′
t) ,

where ξt and ξ
′
t are noises. Construct the gradient estimator

g̃t =
d

2ht

(
yt − y′t

)
sign(ζ⋄t ) , (1.21)

where we introduce sign : Rd → [−1, 1]d as the component-wise sign function (defined at 0 as

1). Consider the function fh : Rd → R, such that for any x ∈ Rd

fh(x) = E [f(x + hV )] ,

where V is uniformly distributed on Bd
1 . This estimator is proposed and analyzed in Chapter 4.

Similar to the case of gradient estimator based on ℓ2-randomization, we use Stokes’ theorem

to show that E[g̃t|xt] = ∇fh(xt) (see Lemma 4.6.1). Moreover, due to the simple form of the

algorithm we are able to provide a desired bound for the term E[∥g̃t∥
2
q∗ ], for any q ∈ [1,∞],

and any f that is L-Lipschitz with respect to ∥·∥q. Our analysis is based on a novel weighted

Poincaré type inequality, which is proposed in Section 4.6. For the case q = 1, the latter

estimator outperforms ℓ2-randomization estimator in the optimization error, up to a
√

log(d)

factor, and if q = 2 they both lead to the optimal upper bound on the optimization error(see

Theorem 4.4.1). Moreover, in terms of required memory, we only need d bits and 1 float to

store (1.21), which is more economic compared to the ℓ2-randomization method that needs to

store d floats.

In the end of this section, we wish to mention the gradient estimator based on Gaussian
randomization, which is introduced by Nesterov (2011) and plays an important role in the

literature of zero-order optimization. At round t ∈ [T ], let ht > 0, and let ζGt be a standard

Gaussian vector. Assume that we receive the link function’s feedback at the two following

points

yt = F (xt − htζ
G
t , ξt), and y′t = F (xt + htζ

G
t , ξ

′
t) ,

where ξt and ξ
′
t are noises. Construct the gradient estimator

g̃t =
1

2ht

(
yt − y′t

)
ζGt ,

and consider the function fh : Rd → R, such that for any x ∈ Rd

fh(x) = E
[
f(x + hζGt )

]
.

However, since this estimator is beyond the scope of the thesis we do not establish its prop-
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erties and we refer the reader to Nesterov (2011); Ghadimi and Lan (2013); Nesterov and

Spokoiny (2017); Balasubramanian and Ghadimi (2021) and references therein.

1.6 Zero-order optimization of highly smooth functions

In this section, we assume that the objective function f is α-strongly convex and differentiable.

Moreover, for any x ∈ Rd, we assume that F (x, ξ(x)) = f(x) + ξ, where ξ is independent from

x, and E
[
ξ2
]
≤ σ2, for σ > 0. Let g̃t be a gradient estimator that employs only zero-order

information. In order to obtain a bound on the optimization error of sub-gradient descent we

need to provide control on the terms

E
[
∥∇f(xt)−E [g̃t|xt]∥22

]
, and E

[
∥g̃t∥

2
2

]
. (1.22)

Indeed, it follows from (1.3.5) and the fact that f is a convex and differentiable function, by

Lemma 1.2.2 we have ∂f(xt) = {∇f(xt)}.

Constructing an estimator g̃t that gives a small squared bias term E
[
∥∇f(xt)−E [g̃t|xt]∥22

]
can be viewed as a problem of non-parametric estimation of the gradient ∇f(·) at certain point

xt. From the intuition that comes from the literature on non-parametric statistics, one may

wonder if the local function approximation (in this case estimating ∇f(xt)) could benefit from

a higher order smoothness assumption on the objective function f . To characterize the notion

of higher order smoothness, we use the well-known β-Hölder class of functions, namely Fβ(L)

(defined in (2.1)), where we restrict our attention to the case β ≥ 2.

In what follows we assume that f ∈ Fβ(L), and consider the following two settings.

Active scheme. This is the usual setting in optimization and online learning, where at

round t the learner chooses z = xt based on {x1, F (x1, ξ(x1)), · · · ,xt−1, F (xt−1, ξ(xt−1))} and

observes F (z, ξ(z)) where z ∈ Rd (or, more restrictively, z ∈ Θ). We discuss this setting in

Chapters 2, 3, and 5.

Passive scheme. We study this setting in Chapter 6, where we are not allowed to choose

the query points and has only access to the whole set {z1, F (z1, ξ(z1)), · · · , zn, F (zn, ξ(zn))},

with zi ∈ Rd for i ∈ [n].

Gradient estimators for active scheme. Exploiting higher order smoothness in the active

scheme can be traced back to Polyak and Tsybakov (1990), where the authors first suggested

to use a smoothing kernel to construct the gradient estimator. Later on, this approach was

developed by Dippon (2003a) and Bach and Perchet (2016). In what follows, we study the

gradient estimator that is proposed by Bach and Perchet (2016) (Chapters 1 and 5), along

with two more examples of gradient estimators that are introduced and analyzed in Chapters

2 and 5. Before introducing these estimators we define an entity that plays a crucial role in the

structure of estimators that take advantage of higher order smoothness property, namely, the
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kernel function K : [−1, 1] → R, such that∫
K(u) du = 0,

∫
uK(u) du = 1,

∫
ujK(u) du = 0, for j = 2, · · · , ℓ,

∫
|u|β|K(u)|du <∞ ,

where ℓ is the largest integer smaller than β. For examples of such kernel functions we refer

the reader to Polyak and Tsybakov (1990) and Bach and Perchet (2016). After introducing the

kernel function K, we are ready to present the gradient estimators.

Smooth gradient estimator based on ℓ2-randomization. At round t ∈ [T ], let ht > 0,

let ζ◦t be a random vector uniformly distributed on ∂Bd
2 , and rt be uniformly distributed on the

interval [−1, 1]. Then, we receive the link function’s feedback at two points as follows:

yt = F (xt − htrtζ
◦
t , ξt), and y′t = F (xt + htrtζ

◦
t , ξ

′
t) ,

where ξt, ξ
′
t are noises. Define the gradient estimator (see Bach and Perchet (2016)) as fol-

lows:

g̃t =
d

2ht

(
yt − y′t

)
ζ◦tK(rt) . (1.23)

In Chapter 1, we investigate the optimization error of Algorithm (1.4) with g̃t as in (1.23). The

analysis provided in Chapter 1 corresponds to the paper Akhavan et al. (2020). It is further

refined in a follow-up work by Novitskii and Gasnikov (2021).

An estimator that is based on ℓ1 randomization (smooth version of (1.21)) is introduced in

Chapter 5.

Smooth gradient estimator based on ℓ1-randomization. At round t ∈ [T ], let ht > 0,

let ζ⋄t be a random vector uniformly distributed on ∂Bd
1 , and rt be uniformly distributed on the

interval [−1, 1]. Then, we receive the link function’s feedback at two points as follows:

yt = F (xt − htrtζ
⋄
t , ξt), and y′t = F (xt + rthtζ

⋄
t , ξ

′
t) .

where ξt, ξ
′
t are noises. Define the gradient estimator as follows:

g̃t =
d

2ht

(
yt − y′t

)
sign (ζ⋄t )K(rt) . (1.24)

In Chapter 5 we show that the performance of (1.24) is comparable to (1.23). However, the

same discussion that we provided on the comparison between (1.21) and (1.20) is valid here.

We only need d bits and 1 float to store (1.24), which is more economic compared to (1.23).

The next estimator might be the most intuitive one as it estimates the gradient coordinate

wise. It is introduced in Chapter 3.

Smooth gradient estimator based on coordinate-wise differences. For i ∈ [d], let

ei ∈ Rd be the i-th canonical basis in Rd. Assume that T = dT0, for a positive integer T0. At

round t ∈ [T0], let ht > 0, and rt be uniformly distributed on the unit interval [−1, 1]. Then, we
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receive the link function’s feedback at 2d points as follows:

yt,i = F (xt − htrtei, ξt,i), and y′t,i = F (xt + htrtei, ξ
′
t,i) ,

where ξt,i, ξ
′
t,i are noises for i ∈ [d]. We define the gradient estimator with components

g̃t,i =
1

2ht

(
yt,i − y′t,i

)
eiK(rt) , (1.25)

and let g̃t = (g̃t,1, · · · , g̃t,d). In Chapter 3 we show that the performance of smooth gradient

estimator based on finite differences is analogous to (1.23), as a function of d and T . However,

there are certain computational benefits in (1.25). For a fixed number of function queries 2T ,

estimators (1.23) and (1.24) require T calls to generate ζ◦t (or ζ⋄t ) and T calls to generate rt,

for t ∈ [T ], but (1.25) only needs T/d calls to generate rt.

Gradient estimator for passive scheme. In the passive scheme, unlike the active scheme,

the learner is not allowed to explore the domain of the function. There is a given set of random

points {z1, . . . , zn} and the noisy function evaluation at these points, namely

F (z1, ξ(z1)), · · · , F (zn, ξ(zn))

that are revealed to the learner and the construction of g̃t is due to this information. Recall

that in the beginning of this section we assumed that F (zi, ξ(zi)) = f(zi) + ξi, where ξi is

independent from zi, with E[∥ξi∥2] ≤ σ2, for i ∈ [n] and σ > 0. However, for optimization in

passive scheme we need a more restrictive assumption on the noise. Particularly, we need to

assume that ξis are mutually independent and E [ξi] = 0. If we use sub-gradient descent with

estimated gradient we need to obtain a small upper bound for the terms in (1.22). To get a

small first term in (1.22) one may consider non-parametric estimation of ∇f(·) at point xt. The

case d = 1 with a deterministic set of points is studied by Müller (1985, 1989) and an extension

to the multivariate case is analyzed by Facer and Müller (2003). Härdle and Nixdorf (1987)

considered the i.i.d. stochastic design setting for d = 1 by proposing a sequential procedure

that is based on non-parametric kernel estimation of f . Tsybakov (1990a) considered the

problem in a general dimension d using local polynomial rather that kernel estimator, and

proved the asymptotic minimax optimality of the proposed algorithm for estimating x∗. The

main drawback of the gradient estimator introduced by Tsybakov (1990a) is that it requires

the values of the input density function at the design points {z1, . . . , zn}, which is inaccessible

in many practical situations. In Chapter 6, as an estimator for the gradient g̃t we propose

a regularized version of local polynomial estimators that does not require the values of the

density function, and we obtain a non-asymptotic convergence rate for the optimization error,

which is minimax optimal up to a log factor. However, similar to the aforementioned references,

we still need the assumption that the density function of the i.i.d. observations {z1, · · · , zn},

should be bounded away from zero on an open neighbourhood of Θ.
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We now give the definition of our gradient estimator. First, we define a smoothing kernel.

Let the smoothing kernel K : Rd → R with a compact support be such that

∀u ∈ Rd : K(u) ≥ 0, and sup
u∈Rd

K(u) <∞ .

Moreover, we assume that K is LK-Lipschitz with respect to ∥·∥2. Denote by S the cardinality

of the set {m : |m| ≤ ℓ} where m is a d-dimensional multi index. Let h > 0. For any z ∈ Θ,

condider

θ(z) =
(
h|m

(1)|Dm(1)
f(z), . . . , h|m

(S)|Dm(S)
f(z)

)⊤
,

where m(1) = 0, and m(i+1) = ei, for i ∈ [d] and let A ∈ Rd×S be a matrix with entries

Ai,j =

1, if j = i+ 1

0, otherwise ,

for i ∈ [d] and j ∈ [S]. Note that with the above structure, for any z ∈ Rd we have

∇f(z) = h−1Aθ(z) .

At each point z ∈ Rd, define the following estimator for θ(z). Denote by U : Rd → RS a

function such that

∀u ∈ Rd : U(u) =

(
um(1)

m(1)!
, . . . ,

um(S)

m(S)!

)⊤

.

For any z ∈ Rd, t ∈ [n], we propose a regularized version of local polynomial estimator for θ(z)
as follows (for a classical version of local polynomial estimators see (Tsybakov, 2009, Section

1.6)):

θ̂t(z) = argmin
θ∈RS

t∑
i=1

[
yi − ⟨θ, U

(
zi − z
ht

)
⟩
]2
K

(
zi − z
ht

)
+
λt
2
∥θ∥22 ,

where λt, ht > 0 and yi = F (zi, ξ(zi)). Now, consider an iterative procedure with the updates

introduced in (1.4), where g̃t is constructed as follows:

Smooth gradient estimator based on regularized local polynomial estimator. For

t ∈ [n], let λt, ht > 0, and construct the gradient estimator

g̃t = h−1
t Aθ̂t(zt) . (1.26)

In Chapter 6, we analyze the error of estimator x∗ in the ∥·∥2-norm of algorithm (1.4) with

g̃t as in (1.26), and we show that it is optimal up to a logarithmic factor. Moreover, for any
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z ∈ Θ, with careful assignments for hn, λn > 0, we prove that g̃(z) = h−1
n Aθ̂n(z) is an optimal

estimator for ∇f(z), with respect to the number of observations n.

1.7 Distributed optimization

In this section, we consider a generalization of problem (1.2), in which the objective function f

is shattered in m pieces and each piece is given to an individual. Namely, we assume that

f(x) =
1

m

m∑
i=1

fi(x) ,

with fi : Rd → R, for i ∈ [m], and each fi is associated to an agent i. At each round, for any

x ∈ Rd, agent i has access to the noisy values of fi, encoded by Fi(x, ξ(x)) = fi(x) + ξ(x).
However, the exchange of information between the agents is limited to a prescribed network

of connections. We characterize this network by the undirected and connected graph, G =

(V,E), where V = [m] is the set of nodes and each node corresponds to an agent. Also, E ⊆
V × V is the set of edges that induces the notion of neighbourhood in the network. Namely,

agents i ̸= j ∈ [m] are neighbours if and only if (i, j) ∈ E, and the exchange of information is

only possible between the neighbouring agents. Consider an iterative procedure, at round t let

xi
t be the update of agent i, which only depends on the outputs of Fi and the information that

she perceives from her neighboring agents. In this framework, the goal is to obtain a small

optimization error for the updates of each agent after T rounds. The problem of interest can

be formulated as controlling the following error term

max
i∈[n]

E
[
f(xi

T )− f(x∗)
]
, (1.27)

where x∗ ∈ argminx∈Θ f(x). Now, consider a critical case where G is a complete graph that

is, the agents have complete information on each other. Then, at each round, each agent

i has access to the zero-order information that is provided by each Fi, and one can expect

that the hardness of problem (1.27) is equivalent to that of the usual problem in order to have

optimization error (1.2). On the contrary, if G is a sparse graph the agents get less information

and problem (1.27) gets harder than the one in (1.2). Now, let us to propose an iterative

algorithm, and formalize this intuition in practice.

Definition 1.7.1. We call W ∈ Rm×m a consensus matrix associated with G if for i, j ∈ [m] it

satisfies

Wi,j ≥ 0, Wi,j ̸= 0 if (i, j) ∈ E or i = j, and
m∑
j=1

Wi,j = 1 ,

In this scheme, based on a given G we are allowed to construct an associated consensus

matrix W which is given to the agents. Accordingly, for a given W we are ready to present
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an iterative procedure in order to have a (1.27). Let ηt > 0, and let x1
1, . . . ,x

1
n be non-random

vectors in Rd. Consider the following updates

xi
t+1 =

m∑
j=1

Wi,jProjΘ
(

xj
t − ηtg

j
t

)
, (1.28)

where gj
t is based on the information perceived by Fj . Note that at each round, the each

agent j provides a local update ProjΘ
(

xj
t − ηtg

j
t

)
. Then, using the consensus matrix W ,

agent i takes a weighted sum of the local updates of her neighbouring agents.

In Chapter 3, we study Problem (1.27), for a strongly convex objective function f . More-

over, we assume that each fi is β-smooth and we study the performance of (1.28), in which we

use Estimator (1.25) as a candidate for gi
t. In order to investigate how the distributed nature of

the problem plays its role in our analysis, consider the quantity ρ =
∥∥W −m−111⊤

∥∥
op, where

∥·∥op is the operator norm and 1 is a vector in Rd with the coordinates all equal to one. Note

that by the definition of W , we have ρ ≤ 1. Moreover, we note that for any connected graph G
one can construct an associated W , in which ρ < 1 see the example that is provided by (3.2).

Therefore, without loss of generality, let us assume that ρ < 1. For a 2-smooth objective func-

tion f , our analysis outlined in Corollary 3.6.3 exhibits the fact that the rate of convergence of

(1.27) for the algorithm (1.28) depends on ρ, and it is of the order (1− ρ)−1. If G is a complete

graph it is reasonable to take W = m−111⊤, which gives ρ = 0, and, as we expect, there is

no trace of the distributed nature of the problem. However, if G is a sparse graph then W is

sparse and ρ is close to 1 that causes an explosion of the term (1− ρ)−1.

1.8 Contextual bandits and fairness

Consider a sequential decision making problem where at each time-step an employer has to

select one candidate from a pool to hire for a job. The employer does not know how well a

candidate will perform if hired, but they can learn it over time by measuring the performance of

previously selected similar candidates. This scenario can be formalized as a (linear) contex-

tual bandit problem (see (Auer, 2002; Chu et al., 2011; Lattimore and Szepesvári, 2020) and

references therein), where each candidate is represented by a context vector, and after the

employer (or agent) chooses a candidate, it receives a reward, i.e. a scalar value measuring

the true performance of the candidate, which depends (linearly) on the context.

In the above framework, the typical objective is to find a policy for the employer to select

candidates with the highest rewards (Abbasi-Yadkori et al., 2011; Auer, 2002; Auer et al.,

2002; Lattimore and Szepesvári, 2020). However, in some important scenarios this objective

may not be appropriate; if candidates belong to different sensitive groups (e.g. based on

ethnicity, gender, etc.) the resulting policy might discriminate or even exclude some groups

completely in the selection process. This may happen when some groups have lower expected

reward than others, e.g. because they acquired less skills due lower financial support. Another
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example arises when each candidate in the pool, if selected, will perform a different kind of

job, and the associated reward is job-specific. For instance, if the employer is a university and

each candidate is a researcher in a different discipline, then the rewards associated to different

disciplines will be substantially different and incomparable, e.g. citations counts greatly vary

among different subjects; see (Kearns et al., 2017) for a discussion. In both of the above

scenarios, it is unfair to directly compare rewards of candidates belonging to different groups.

A simple way to deal with this issue would be to select the candidate to hire uniformly

at random. This policy satisfies a notion of fairness called demographic parity (see Calders

et al. (2009); Mehrabi et al. (2021) and references therein), which requires the probability

of selecting a candidate from a certain group to be equal for all groups. However, as it is

apparent, this approach completely ignores the employer’s goal of selecting good candidates

and is also unfair to candidates who spent effort acquiring credentials for the job. In this work,

we provide a fair way of comparing candidates from different groups via the relative rank, that

is the rank (or quantile) of the reward w.r.t. the rewards distribution of the candidate’s group.

We call a policy group meritocratic fair (GMF) if it always selects a candidate with the highest

relative rank. Such a policy is meritocratic but only in terms of the within-group performance.

A closely related idea has been introduced in Kearns et al. (2017) for settings where the

candidates’ rewards are available before the selection, while we are not aware of a similar

notion in the multi-armed bandits literature.

A GMF policy requires the knowledge of the relative rank of each candidate which is not

directly observed by the agent and depends on the underlying reward model and on the dis-

tributions of rewards.

In recent years algorithmic fairness has received a lot of attention, becoming a large area

of machine learning research. The potential for learning algorithms to amplify pre-existing bias

and cause harm to human beings has triggered researchers to study solutions to mitigate or

remove unfairness of the learned predictor, see Barocas et al. (2018); Calmon et al. (2017);

Chierichetti et al. (2017); Donini et al. (2018); Dwork et al. (2018); Hardt et al. (2016) and

references therein. Fairness in sequential decision problems (see Zhang and Liu (2021) for a

survey) is usually divided into two categories: group fairness (GF) and individual fairness. We

give an overview of these notions below.

GF requires some statistical measure to be (approximately) equal across different sensitive

groups. A prominent example relevant to this work is demographic parity, which requires that

the probability that the policy selects a candidate from a certain group should be the same

for all groups. A similar notion is used by Chen et al. (2020); Patil et al. (2020), where the

probability that the policy selects a candidate has to always be greater than a given threshold

for all candidates. Li et al. (2019) impose a weaker requirement concerning the expected

fraction of candidates selected from each group. Other examples of GF in sequential decision

problems are equal opportunity (Bechavod et al., 2019) and equalized odds (Blum et al.,

2018). Under some assumptions on the distributions of the contexts, the GMF policy and

greedy policy that we propose satisfy variants of demographic parity at each round.
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Individual fairness can be divided in two categories: fairness through awareness (FA) (Liu

et al., 2017; Wang et al., 2021) and meritocratic fairness (MF) (Joseph et al., 2018, 2016).

FA is based on the idea that similar individuals should be treated similarly and is designed

to avoid “winner takes all” scenarios where some individuals cannot be selected when they

have a lower reward than others in the pool, even if the difference between rewards is very

small. For example, Wang et al. (2021) propose a policy where the probability of selecting

a context over another is lower when the context has a lower reward, but is never zero. MF

instead requires that less qualified individual should not be favored over more qualified ones,

which could happen during the learning process. For example Joseph et al. (2016) proposes

an algorithm based on confidence intervals, where if the uncertainty between the best arms

is too high the arm is selected uniformly at random. This guarantees meritocratic fairness at

each round but comes at a cost in terms of regret.

Our definition of fairness falls between group and meritocratic fairness. It is meritocratic

because it states that a candidate with a worse relative rank than another should never be

selected. It is also based on groups since the relative ranks directly depend on the distribution

of rewards of each group. A similar idea of fairness based on relative rank has been introduced

in Kearns et al. (2017), which study the problem of selecting candidates from different groups

based on their scalar-valued score when the scores between groups are incomparable (e.g.

number of citations in different research areas). Contrary to our work, where the (noisy)

rewards are observed only for the selected candidates, in Kearns et al. (2017) the noiseless

scores for all candidates can be accessed before the selection. This difference makes the

estimation of the relative rank simpler in Kearns et al. (2017), as the rewards CDFs can be

estimated more efficiently.

1.9 Résumé en français

Optimisation

L’optimisation est une branche de l’étude où le but est d’estimer une quantité extrême associée

à une certaine fonction. Des exemples de telles quantités extrémales incluent un minimiseur,

un maximiseur, un point de selle, et autres. Dans cette section, nous présentons et étudions

l’un des modèles les plus courants où la quantité extrême est un minimiseur d’une fonction f :

Rd → R dans un sous-ensemble fermé et convexe Θ de Rd. Plus précisément, nous sommes

intéressés par l’estimation de En particulier, le problème qui nous intéresse est d’estimer

x∗ ∈ argmin
x∈Θ

f(x) ,

par une certaine x̂ potentiellement aléatoire, ce qui garantit une petite erreur d’optimisation,

c’est-à-dire que

E [f(x̂)]− f(x∗) . (1.29)
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où l’espérance dans (1.29) est par rapport à la distribution de probabilité de x̂. Bien en-

tendu, sans spécifier le type d’information auquel nous pouvons accéder sur la fonction f ,

le problème énoncé ci-dessus est sans espoir. Nous présentons ci-dessous un modèle

d’interrogation assez général, qui inclut de nombreux schémas d’observation populaires.

Considérons une procédure itérative, telle que à chaque temps t ≥ 1, pour tout choix

x ∈ Rd de l’apprenant, la nature produit une information bruyante sur la fonction, codée

par la fonction de liaison F (x, ξ(x)), où ξ(x) est un bruit de mesure. Formellement, il existe

F : Rd × Rℓ1 → Rℓ2 , pour quelques entiers positifs ℓ1, ℓ2, de sorte que pour chaque vecteur

x ∈ Rd sélectionné par l’apprenant, la nature échantillonne la variable de bruit ξ(x) et renvoie

F (x, ξ(x)) à l’apprenant.

Le cadre ci-dessus est plutôt abstrait et le problème concret et la stratégie d’estimation

dépendront de la forme de la fonction de liaison F . Fournissons quelques exemples de fonc-

tions de liaison F et mettons-les en relation avec les paramètres bien connus de la littérature

sur l’optimisation. Tout d’abord, nous donnons la définition du sous-gradient d’une fonction.

Définition 1.9.1. Soit f : Rd → R, et fixons x ∈ Rd. Nous appelons ∂f(x) ⊆ Rd l’ensemble

des sous-gradients (ou sous-différentielles) de f au point x, si pour tout g dans∂f(x), et

ydansRd, nous avons

f(x)− f(y) ≤ ⟨g,x − y⟩.

Si f est une fonction convexe, la définition ci-dessus est une généralisation du gradient de

f . En particulier, si f est convexe et différentiable en x dansRd, alors ∂f(x) = {∇f(x)} (voir

le Lemme 1.2.2).

Exemple 1.9.2 (Optimisation du premier ordre). Nous appelons un problème d’optimisation

un problème du premier ordre si la fonction de liaison F : Rd × Rd → Rd et l’évaluation au

point x ∈ Rd contiennent des informations sur un sous-gradient de la fonction au point x. Le

cas le plus simple est celui où F (x, ξ(x)) ∈ ∂f(x).
Dans le cadre stochastique avec une fonction objectif différentiable f , le cas le plus connu

est E[F (x, ξ(x))] = ∇f(x) (Robbins and Monro, 1951). Un exemple particulier est le modèle

de bruit additif, où F (x, ξ(x)) = ∇f(x) + ξ(x).

Exemple 1.9.3 (Optimisation d’ordre zéro). Un problème d’optimisation est appelé un prob-

lème d’ordre zéro si pour tout x dansRd, la fonction de liaison F : Rd × R → R fournit des

informations sur les valeurs de la fonction. À titre d’exemple, on peut considérer le modèle de

bruit additif F (x, ξ(x)) = f(x) + ξ(x). C’est le cas principal étudié ci-dessous. Tout au long de

cette thèse, chaque fois que nous mentionnerons que l’apprenant a accès à des informations

d’ordre zéro, nous ferons référence à F (x, ξ(x)) = f(x) + ξ(x).

Dans les sections suivantes, nous présentons un bref historique de l’analyse convexe et

de l’optimisation convexe.
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Optimisation d’ordre zéro de fonctions Lipschitz

Dans cette section, nous supposons que la fonction objectif f est convexe, et que la fonction

de liaison ne fournit que des informations bruyantes d’ordre zéro. En particulier, nous sup-

posons que pour toute x ∈ Rd nous avons F (x, ξ(x)) = f(x) + ξ, où et E[ξ2] ≤ σ2 pour σ > 0.

Considérons les mises à jour dans (1.18), et supposons que pour tout h > 0, il existe une

fonction de substitution fh(x) : Rd → R, telle que fh est convexe et différentiable, et pour tout

x ∈ Rd nous avons

0 ≤ fh(x)− f(x) ≤ ∆, et E [g̃t|xt] = ∇fh(xt) presque sûrement ,

où ∆ > 0. Ensuite, en utilisant la limite fournie par (1.19), nous obtenons

T∑
t=1

E [fh(xt)− fh(x∗)] ≤ V (x∗)−minx∈Θ V (x)
ηT

+
1

2

T∑
t=1

ηtE
[
∥g̃t∥

2
q∗

]
.

et par conséquent

T∑
t=1

E [f(xt)− f(x∗)] ≤ V (x∗)−minx∈Θ V (x)
ηT

+
1

2

T∑
t=1

ηtE
[
∥g̃t∥

2
q∗

]
+ T∆ .

Ainsi, si ∆ est suffisamment petit, une limite significative pour l’erreur d’optimisation de x̄T =
1
T

∑T
t=1 xt suit si nous fournissons une limite supérieure suffisamment serrée pour E[∥g̃t∥

2
q∗ ],

et attribuons correctement les tailles de pas ηt pour t ∈ [T ]. L’idée d’utiliser une fonction de

substitution particulière fh(·) est proposée pour la première fois par (Nemirovsky and Yudin,

1983, Chapitre 9.3.2) comme un exercice. Nous fournissons ci-dessous deux exemples de g̃t

et de fh(·), où dans la construction de g̃t nous n’utilisons que des informations d’ordre zéro.

Estimateur de gradient basé sur la randomisation de ℓ2. Au tour t ∈ [T ], laissez ht > 0,

et laissez ζ◦t être un vecteur aléatoire uniformément distribué sur ∂Bd
2 . Supposons que nous

recevions la rétroaction de la fonction de liaison aux deux points suivants

yt = F (xt − htζ
◦
t , ξt), et y′t = F (xt + htζ

◦
t , , ξ

′
t) ,

où ξt et ξ
′
t sont des bruits. Construire l’estimateur du gradient

g̃t =
d

2ht

(
yt − y′t

)
ζ◦t . (1.30)

Une version initiale de cet estimateur, qui n’est construite que sur la base d’une rétroaction

ponctuelle, est proposée par Nemirovsky and Yudin (1983) et étudiée plus en détail par Flax-

man et al. (2005). Le fait que E[g̃t|xt] = fh(xt), où tel que pour tout x dansRd,

fh(x) = E [f(x + hU)] ,
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et que U est uniformément distribué dans Bd
2 est énoncé sans preuve dans Nemirovsky and

Yudin (1983) et Flaxman et al. (2005). Il est fait référence au théorème de Stokes dans Flax-

man et al. (2005). La version précise du théorème de Stokes nécessaire au fonctionnement de

l’estimateur est énoncée et prouvée au Chapitre 4. La forme actuelle de (1.30) est introduite

par Agarwal et al. (2010), et elle est analysée plus en détail par Duchi et al. (2015); Novitskii

and Gasnikov (2021); Shamir (2017). De plus, pour q = 1, 2, la borne sur E
[
∥g̃t∥

2
q∗

]
, avec g̃t

donné dans (1.30) est obtenue par (Shamir, 2017, Corollaires 2 et 3) pour les fonctions f qui

sont L-Lipschitz par rapport à ∥·∥q.
Estimateur de gradient basé sur la randomisation de ℓ1. Au tour t ∈ [T ], laissez ht > 0,

et laissez ζ⋄t être un vecteur aléatoire uniformément distribué sur ∂Bd
1 . Supposons que nous

recevions la rétroaction de la fonction de liaison aux deux points suivants

yt = F (xt − htζ
⋄
t , ξt), et y′t = F (xt + htζ

⋄
t , ξ

′
t) ,

où ξt et ξ
′
t sont des bruits. Construire l’estimateur du gradient

g̃t =
d

2ht

(
yt − y′t

)
sign(ζ⋄t ) , (1.31)

où nous introduisons sign : Rd → [−1, 1]d comme la fonction de signe par composante (définie

à 0 comme 1). Considérons la fonction fh : Rd → R, telle que pour tout x ∈ Rd

fh(x) = E [f(x + hV )] ,

où V est uniformément distribué sur Bd
1 . Cet estimateur est proposé et analysé au Chapitre 4.

Comme dans le cas de l’estimateur du gradient basé sur la randomisation ℓ2, nous utilisons le

théorème de Stokes pour montrer que E[g̃t|xt] = fh(xt) (voir le lemme 4.6.1). De plus, grâce à

la forme simple de l’algorithme, nous sommes en mesure de fournir une limite souhaitée pour

le terme E[∥g̃t∥
2
q∗ ], pour tout q ∈ [1,∞], et tout f qui est L-Lipschitz par rapport à ∥·∥q. Notre

analyse est basée sur une nouvelle inégalité pondérée de type Poincaré, qui est proposée

dans la Section 4.6. Pour le cas q = 1, ce dernier estimateur surpasse l’estimateur par

randomisation ℓ2 en ce qui concerne l’erreur d’optimisation, jusqu’à un facteur
√
log(d), et si

q = 2, ils conduisent tous deux à la limite supérieure optimale de l’erreur d’optimisation (voir

le Théorème 4.4.1). De plus, en termes de mémoire requise, nous n’avons besoin que de d

bits et 1 flottants pour stocker (1.31), ce qui est plus économique par rapport à la méthode de

randomisation ℓ2 qui nécessite de stocker d flottants.

À la fin de cette section, nous souhaitons mentionner l’estimateur de gradient basé sur
la randomisation gaussienne, qui est introduit par Nesterov (2011) et joue un rôle important

dans la littérature de l’optimisation d’ordre zéro. Au tour t ∈ [T ], laissez ht > 0, et laissez

ζGt être un vecteur gaussien standard. Supposons que nous recevions la rétroaction de la
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fonction de liaison aux deux points suivants

yt = F (xt − htζ
G
t , ξt), et y′t = F (xt + htζ

G
t , ξ

′
t) ,

où ξt et ξ
′
t sont des bruits. Construire l’estimateur du gradient

g̃t =
1

2ht

(
yt − y′t

)
ζGt ,

et considérons la fonction fh : Rd → R, telle que pour tout x ∈ Rd, on obtient

fh(x) = E
[
f(x + hζGt )

]
.

Cependant, comme cet estimateur dépasse le cadre de la thèse, nous n’établissons pas ses

propriétés et nous renvoyons le lecteur aux documents suivants : Nesterov (2011) ; Ghadimi

and Lan (2013) ; Nesterov and Spokoiny (2017) ; Balasubramanian and Ghadimi (2021) et

leurs références.

Optimisation d’ordre zéro de fonctions hautement lisses

Dans cette section, nous supposons que la fonction objectif f est α-fortement convexe et

différentiable. De plus, pour toute x ∈ Rd, nous supposons que F (x, ξ(x)) = f(x) + ξ, où ξ

est indépendant de x, et Exp
[
ξ2
]
≤ σ2, pour σ > 0. Soit g̃t un estimateur de gradient qui

n’utilise que l’information d’ordre zéro. Afin d’obtenir une limite sur l’erreur d’optimisation de

la descente par sous-gradient, nous devons fournir un contrôle sur les termes

E
[
∥∇f(xt)−E [g̃t|xt]∥22

]
, and E

[
∥g̃t∥

2
2

]
. (1.32)

En effet, il découle de (1.3.5) et du fait que f est une fonction convexe et différentiable, par le

Lemme 1.2.2 nous avons ∂f(xt) = {∇f(xt)}. Construire un estimateur g̃t qui donne un

petit terme de biais au carré E
[
∥∇f(xt)−E [g̃t|xt]∥22

]
peut être vu comme un problème

d’estimation non paramétrique du gradient ∇f(·) en un certain point xt. D’après l’intuition

issue de la littérature sur les statistiques non paramétriques, on peut se demander si approx-

imation locale de la fonction (dans ce cas, l’estimation de ∇f(xt)) ne pourrait pas bénéficier

d’une hypothèse de lissé d’ordre supérieur sur la fonction objectif f . Pour caractériser la no-

tion de lissé d’ordre supérieur, nous utilisons la classe de fonctions de Hölder bien connue de

β, à savoir Fβ(L) (définie dans (2.1)), où nous limitons notre attention au cas β ≥ 2.

Dans ce qui suit, nous supposons que f ∈ Fβ(L), et considérons les deux paramètres

suivants.

Schéma actif. Il s’agit du paramètre habituel en optimisation et en apprentissage en ligne,
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où, au tour t, l’apprenant choisit z = xt en fonction de

{x1, F (x1, ξ(x1)), · · · ,xt−1, F (xt−1, ξ(xt−1))}

et observe F (z, ξ(z)) où z ∈ Rd (ou, de manière plus restrictive, z ∈ Θ). Nous discutons de ce

paramètre dans les Chapitres 2, 3, et 5.

Schéma passif. Nous étudions ce paramètre dans le Chapitre 6, où nous ne sommes

pas autorisés à choisir les points de requête et n’avons accès qu’à l’ensemble

{z1, F (z1, ξ(z1)), · · · , zn, F (zn, ξ(zn))}

, avec zi ∈ Rd pour i ∈ [n].

Estimateurs de gradient pour le schéma actif. L’exploitation du lissage d’ordre supérieur

dans le schéma actif remonte à Polyak and Tsybakov (1990), où les auteurs ont d’abord sug-

géré d’utiliser un noyau de lissage pour construire l’estimateur du gradient. Plus tard, cette

approche a été développée par Dippon (2003a) et Bach and Perchet (2016). Dans ce qui

suit, nous étudions l’estimateur du gradient qui est proposé par Bach and Perchet (2016)

(Chapitres 1 et 5), ainsi que deux autres exemples d’estimateurs de gradient qui sont présen-

tés et analysés dans les Chapitres 2 et 5. Avant de présenter ces estimateurs, nous définis-

sons une entité qui joue un rôle crucial dans la structure des estimateurs qui tirent parti de la

propriété de lissage d’ordre supérieur, à savoir la fonction noyau K : [−1, 1] → R, telle que∫
K(u) du = 0,

∫
uK(u) du = 1,

∫
ujK(u) du = 0, pour j = 2, · · · , ℓ,

∫
|u|β|K(u)|du <∞ ,

où ℓ est le plus grand entier inférieur à β. Pour des exemples de telles fonctions à noyau, nous

renvoyons le lecteur à Polyak and Tsybakov (1990) et Bach and Perchet (2016). Après avoir

introduit la fonction noyau K, nous sommes prêts à présenter les estimateurs du gradient.

Estimateur de gradient lisse basé sur la randomisation ℓ2. Au tour t ∈ [T ], laissez ht >

0, laissez ζ◦t être un vecteur aléatoire uniformément distribué sur ∂Bd
2 , et rt être uniformément

distribué sur l’intervalle [−1, 1]. Ensuite, nous recevons le retour de la fonction de liaison en

deux points comme suit :

yt = F (xt − htrtζ
◦
t , ξt), et y′t = F (xt + htrtζ

◦
t , ξ

′
t) ,

où ξt, ξ
′
t sont des bruits. Définissez l’estimateur du gradient (voir Bach and Perchet (2016))

comme suit :

g̃t =
d

2ht

(
yt − y′t

)
ζ◦tK(rt) . (1.33)

Dans le Chapitre 1, nous étudions l’erreur d’optimisation de l’algorithme (1.4) avec g̃t comme

dans (1.33). L’analyse fournie dans le Chapitre 1 correspond à l’article Akhavan et al. (2020).
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Elle est affinée dans un travail de suivi par Novitskii and Gasnikov (2021).

Un estimateur basé sur la randomisation ℓ1 (version lisse de (1.31)) est présenté au

Chapitre 5.

Estimateur de gradient lisse basé sur la randomisation ℓ1. Au tour t ∈ [T ], laissez ht >

0, laissez ζ⋄t être un vecteur aléatoire uniformément distribué sur ∂Bd
1 , et rt être uniformément

distribué sur l’intervalle [−1, 1]. Ensuite, nous recevons le retour de la fonction de liaison en

deux points comme suit :

yt = F (xt − htrtζ
⋄
t , ξt), et y′t = F (xt + rthtζ

⋄
t , ξ

′
t) .

où ξt, ξ
′
t sont des bruits. Définissez l’estimateur du gradient comme suit :

g̃t =
d

2ht

(
yt − y′t

)
sign (ζ⋄t )K(rt) . (1.34)

Au Chapitre 5, nous montrons que les performances de (1.34) sont comparables à celles de

(1.33). Cependant, la même discussion que nous avons fournie sur la comparaison entre

(1.31) et (1.30) est valable ici. Nous n’avons besoin que de d bits et 1 entier pour stocker

(1.34), ce qui est plus économique comparé à (1.33).

L’estimateur suivant est peut-être le plus intuitif car il estime le gradient par coordonnées.

Il est présenté au Chapitre 3.

Estimateur de gradient lisse basé sur les différences entre coordonnées. Pour i ∈ [d],

laissez ei ∈ Rd être la iième base canonique dans Rd. Supposons que T = dT0, pour un entier

positif T0. Au tour t ∈ [T0], laissons ht > 0, et rt être uniformément distribués sur l’intervalle

unitaire [−1, 1]. Ensuite, nous recevons le retour de la fonction de liaison à 2d points comme

suit :

yt,i = F (xt − htrtei, ξt,i), et y′t,i = F (xt + htrtei, ξ
′
t,i) ,

où ξt,i, ξ
′
t,i sont des bruits pour i ∈ [d]. Nous définissons l’estimateur du gradient avec des

composantes

g̃t,i =
1

2ht

(
yt,i − y′t,i

)
eiK(rt) , (1.35)

et soit g̃t = (g̃t,1, · · · , g̃t,d). Au Chapitre 3, nous montrons que les performances de l’estimateur

du gradient lisse basé sur les différences finies sont analogues à celles de (1.33), en fonction

de d et T . Cependant, l’(1.35) présente certains avantages en termes de calcul. Pour un nom-

bre fixe de requêtes de fonctions 2T , les estimateurs (1.33) et (1.34) nécessitent T d’appels

pour générer ζ◦t (ou ζ⋄t ) et T d’appels pour générer rt, pour t ∈ [T ], mais (1.35) ne nécessite

que T/d d’appels pour générer rt.

Estimateur de gradient pour le schéma passif. Dans le schéma passif, contrairement

au schéma actif, l’apprenant n’est pas autorisé à explorer le domaine de la fonction. Il existe
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un ensemble donné de points aléatoires {z1, . . . , zn} et l’évaluation bruyante de la fonction à

ces points, à savoir

F (z1, ξ(z1)), · · · , F (zn, ξ(zn))

qui sont révélés à l’apprenant et la construction de g̃t est due à ces informations. Rappelons

qu’au début de cette section, nous avons supposé que F (zi, ξ(zi)) = f(zi) + ξi, où ξi est

indépendant de zi, avec E[∥ξi∥2] ≤ σ2, pour i ∈ [n] et σ > 0. Cependant, pour l’optimisation

dans le schéma passif, nous avons besoin d’une hypothèse plus restrictive sur le bruit. En par-

ticulier, nous devons supposer que les ξis sont mutuellement indépendants et que E [ξi] = 0.

Si nous utilisons la descente par sous-gradient avec gradient estimé, nous devons obtenir une

petite limite supérieure pour les termes de (1.32). Pour obtenir un petit premier terme dans

(1.32), on peut considérer une estimation non paramétrique de ∇f(·) au point xt. Le cas d = 1

avec un ensemble déterministe de points est étudié par Müller (1985, 1989) et une extension

au cas multivarié est analysée par Facer and Müller (2003). Härdle and Nixdorf (1987) ont

considéré le cadre du plan stochastique i.i.d. pour d = 1 en proposant une procédure séquen-

tielle qui est basée sur l’estimation non-paramétrique du noyau de f . Tsybakov (1990a) a con-

sidéré le problème dans une dimension générale d en utilisant un polynôme local plutôt qu’un

estimateur à noyau, et a prouvé l’optimalité asymptotique minimax de l’algorithme proposé

pour estimer x∗. Le principal inconvénient de l’estimateur du gradient introduit par Tsybakov

(1990a) est qu’il nécessite les valeurs de la fonction de densité d’entrée aux points de con-

ception {z1, . . . , zn}, ce qui est inaccessible dans de nombreuses situations pratiques. Dans

le Chapitre 6, nous proposons, comme estimateur du gradient g̃t, une version régularisée des

estimateurs polynomiaux locaux qui ne nécessite pas les valeurs de la fonction de densité,

et nous obtenons un taux de convergence non asymptotique pour l’erreur d’optimisation, qui

est minimax optimal jusqu’à un facteur log. Cependant, comme dans les références susmen-

tionnées, nous avons toujours besoin de l’hypothèse selon laquelle la fonction de densité des

observations i.i.d. {z1, · · · , zn}, doit être bornée loin de zéro dans un voisinage ouvert de Θ.

Nous donnons maintenant la définition de notre estimateur de gradient. Tout d’abord,

nous définissons un noyau de lissage. Soit le noyau de lissage K : Rd → R avec un support

compact tel que

∀u ∈ Rd : K(u) ≥ 0, et sup
u∈Rd

K(u) <∞ .

De plus, nous supposons que K est LK-Lipschitz par rapport à ∥·∥2. Dénotons par S la

cardinalité de l’ensemble {m : |m| ≤ ℓ} où m est un multi-indice à d dimensions. Soit h > 0.

Pour tout z ∈ Θ, condensons

θ(z) =
(
h|m

(1)|Dm(1)
f(z), . . . , h|m

(S)|Dm(S)
f(z)

)⊤
,
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où m(1) = 0, et m(i+1) = ei, pour i ∈ [d] et laissons A ∈ Rd×S être une matrice avec des

entrées

Ai,j =

1, if j = i+ 1

0, sinon ,

pour i

in[d] et j ∈ [S]. Notez qu’avec la structure ci-dessus, pour tout z ∈ Rd nous avons

∇f(z) = h−1Aθ(z) .

En chaque point z ∈ Rd, définissez l’estimateur suivant pour θ(z). On désigne par U : Rd →
RS une fonction telle que

∀u ∈ Rd : U(u) =

(
um(1)

m(1)!
, . . . ,

um(S)

m(S)!

)⊤

.

Pour toute z ∈ Rd, t ∈ [n], nous proposons une version régularisée de l’estimateur polynomial

local pour θ(z) comme suit (pour une version classique des estimateurs polynomiaux locaux,

voir (Tsybakov, 2009, Section 1.6)) :

θ̂t(z) = argmin
θ∈RS

t∑
i=1

[
yi − ⟨θ, U

(
zi − z
ht

)
⟩
]2
K

(
zi − z
ht

)
+
λt
2
∥θ∥22 ,

où λt, ht > 0 et yi = F (zi, ξ(zi)). Considérons maintenant une procédure itérative avec les

mises à jour introduites dans (1.4), où g̃t est construit comme suit :

Estimateur de gradient lisse basé sur un estimateur polynomial local régularisé.
Pour t ∈ [n], laissons λt, ht > 0, et construisons l’estimateur du gradient

g̃t = h−1
t Aθ̂t(zt) . (1.36)

Au Chapitre 6, nous analysons l’erreur de l’estimateur x∗ dans la norme ∥·∥2 de l’algorithme

(1.4) avec g̃t comme dans (1.36), et nous montrons qu’il est optimal jusqu’à un facteur loga-

rithmique. De plus, pour toute z ∈ Θ, avec des affectations prudentes pour hn, λn > 0, nous

prouvons que g̃(z) = h−1
n Aθ̂n(z) est un estimateur optimal pour ∇f(z), par rapport au nombre

d’observations n.

Optimisation distribuée

Dans cette section, nous considérons une généralisation du problème (1.29), dans lequel la

fonction objectif f est brisée en m morceaux et chaque morceau est donné à un individu. Plus
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précisément, nous supposons que

f(x) =
1

m

m∑
i=1

fi(x) ,

avec fi : Rd → R, pour i ∈ [m], et chaque fi est associé à un agent i. A chaque tour, pour

tout x ∈ Rd, l’agent i a accès aux valeurs bruitées de fi, codées par Fi(x, ξ(x)) = fi(x) +
ξ(x). Cependant, l’échange d’informations entre les agents est limité à un réseau prescrit de

connexions. Nous caractérisons ce réseau par le graphe non dirigé et connecté, G = (V,E),

où V = [m] est l’ensemble des nœuds et chaque nœud correspond à un agent. De plus,

E ⊆ V ×V est l’ensemble des arêtes qui induit la notion de voisinage dans le réseau. A savoir,

les agents i ̸= j ∈ [m] sont voisins si et seulement si (i, j) ∈ E, et l’échange d’informations

n’est possible qu’entre les agents voisins. Considérons une procédure itérative, au tour t let

xi
t être la mise à jour de l’agent i, qui ne dépend que des sorties de Fi et des informations

qu’elle perçoit de ses agents voisins. Dans ce cadre, le but est d’obtenir une petite erreur

d’optimisation pour les mises à jour de chaque agent après T rounds. Le problème d’intérêt

peut être formulé comme le contrôle du terme d’erreur suivant

max
i∈[n]

E
[
f(xi

T )− f(x∗)
]
, (1.37)

où x∗ ∈ argminx∈Θ f(x). Maintenant, considérons un cas critique où G est un graphe complet,

c’est-à-dire que les agents ont une information complète les uns sur les autres. Alors, à

chaque tour, chaque agent i a accès à l’information d’ordre zéro qui est fournie par chaque

Fi, et on peut s’attendre à ce que la dureté du problème (1.37) soit équivalente à celle du

problème habituel pour avoir une erreur d’optimisation (1.29). Au contraire, si G est un graphe

clairsemé, les agents obtiennent moins d’informations et le problème (1.37) devient plus dur

que celui de (1.29). Maintenant, proposons un algorithme itératif, et formalisons cette intuition

en pratique.

Definition 1.9.4. Nous appelons W ∈ Rm×m une matrice de consensus associée à G si pour

i, j ∈ [m] elle satisfait à

Wi,j ≥ 0, Wi,j ̸= 0 si (i, j) ∈ E ou i = j, et
m∑
j=1

Wi,j = 1 ,

Dans ce schéma, sur la base d’une G donnée, nous sommes autorisés à construire une

matrice de consensus associée W qui est donnée aux agents. En conséquence, pour une

W donnée, nous sommes prêts à présenter une procédure itérative afin d’obtenir une (1.37).

Soit ηt > 0, et que x1
1, . . . ,x

1
n soient des vecteurs non aléatoires dans Rd. Considérons les
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mises à jour suivantes

xi
t+1 =

m∑
j=1

Wi,jProjΘ
(

xj
t − ηtg

j
t

)
, (1.38)

où gj
t est basé sur l’information perçue par Fj . Notez qu’à chaque tour, chaque agent j fournit

une mise à jour locale ProjΘ
(

xj
t − ηtg

j
t

)
. Ensuite, en utilisant la matrice de consensus W ,

l’agent i prend une somme pondérée des mises à jour locales de ses agents voisins.

Dans le Chapitre 3, nous étudions le problème (1.37), pour une fonction objectif fortement

convexe f . De plus, nous supposons que chaque fi est β-smooth et nous étudions la per-

formance de (1.38), dans lequel nous utilisons l’estimateur (1.35) comme candidat pour gi
t.

Afin d’étudier comment la nature distribuée du problème joue son rôle dans notre analyse,

considérons la quantité ρ =
∥∥W −m−111⊤

∥∥
op, où ∥·∥op est la norme de l’opérateur et 1 est

un vecteur dans Rd avec les coordonnées toutes égales à un. Notons que par la définition de

W , nous avons ρ ≤ 1. De plus, on note que pour tout graphe connecté G on peut construire

un W associé, dans lequel ρ < 1 voir l’exemple qui est fourni par (3.2). Par conséquent,

sans perte de généralité, supposons que ρ < 1. Pour une fonction objective f lisse à 2, notre

analyse décrite dans le Corollaire 3.6.3 montre le fait que le taux de convergence de (1.37)

pour l’algorithme (1.38) dépend de ρ, et qu’il est de l’ordre de (1 − ρ)−1. Si G est un graphe

complet, il est raisonnable de prendre W = m−111⊤, ce qui donne ρ = 0, et, comme nous

nous y attendons, il n’y a aucune trace de la nature distribuée du problème. Cependant, si

G est un graphe clairsemé alors W est clairsemé et ρ est proche de 1 ce qui provoque une

explosion du terme (1− ρ)−1.

Bandits contextuels et équité

Considérons un problème de prise de décision séquentielle où, à chaque étape temporelle, un

employeur doit sélectionner un candidat dans une réserve pour l’embaucher pour un poste.

L’employeur ne connaît pas les performances d’un candidat s’il est embauché, mais il peut

l’apprendre au fil du temps en mesurant les performances de candidats similaires sélection-

nés précédemment. Ce scénario peut être formalisé sous la forme d’un problème de bandit

contextuel (linéaire) (voir (Auer, 2002; Chu et al., 2011; Lattimore and Szepesvári, 2020) et

les références y afférentes), où chaque candidat est représenté par un vecteur de contexte, et

après que l’employeur (ou l’agent) ait choisi un candidat, il reçoit une récompense, c’est-à-dire

une valeur scalaire mesurant la performance réelle du candidat, qui dépend (linéairement) du

contexte.

Dans le cadre ci-dessus, l’objectif typique est de trouver une politique permettant à em-

ployeur de sélectionner les candidats ayant les récompenses les plus élevées (Abbasi-Yadkori

et al., 2011; Auer, 2002; Auer et al., 2002; Lattimore and Szepesvári, 2020). Cependant, dans

certains scénarios importants, cet objectif peut ne pas être approprié ; si les candidats ap-
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partiennent à différents groupes sensibles chaque candidat appartient à un groupe sensible

différent (par exemple, sur la base de l’appartenance ethnique, du sexe, etc.), la politique qui

en résulte peut entraîner une discrimination, voire l’exclusion totale de certains groupes dans

le processus de sélection. Il en résulte une injustice sociale. Les personnes qui, en raison de

l’injustice sociale, ont soit une rémunération inférieure à celle des autres, par exemple parce

qu’elles ont acquis moins de compétences en raison d’une rémunération inférieure à celle

des autres. Cela peut se produire lorsque certains groupes ont une récompense attendue

plus faible que d’autres, par exemple parce qu’ils ont acquis moins de compétences en raison

d’un soutien financier plus faible. d’un soutien financier. ou lorsqu’ils sont évalués injuste-

ment, par exemple en raison de préjugés raciaux ou sexistes dans le processus d’évaluation.

Nous supposons que les récompenses que nous recevons sont correctes, et non qu’elles

sont fausses/biaisées. Dans notre contexte, l’injustice vient strictement de l’impossibilité de

comparer les candidats entre eux en raison de circonstances externes, et non d’un biais dans

la mesure de la récompense. Un autre exemple se produit lorsque le candidat, s’il est sélec-

tionné, effectuera un travail différent, par exemple lorsque l’employeur est une université et

que chaque candidat est un chercheur dans une matière différente (chimie, mathématiques,

etc.) ; (Kearns et al., 2017). se produit lorsque chaque candidat du pool, s’il est sélectionné,

effectuera un type de travail différent, et que la récompense associée est spécifique au travail.

Par exemple , si l’employeur est une université et que chaque candidat est un chercheur dans

une discipline différente, alors les récompenses associées à différentes disciplines seront

substantiellement différentes et incomparables, par exemple : le nombre de citations varie

considérablement d’une discipline à l’autre ; voir (Kearns et al., 2017) pour une discussion.

Dans les deux scénarios ci-dessus, il est injuste de comparer directement les récompenses

de candidats appartenant à des groupes différents.

Une manière simple de traiter ce problème serait de sélectionner le candidat à embaucher

de manière uniforme et aléatoire. Cette politique satisfait une notion d’équité appelée par-

ité démographique (voir Calders et al. (2009); Mehrabi et al. (2021) et les références y af-

férentes), qui exige que la probabilité de sélectionner un candidat d’un certain groupe soit

égale pour tous les groupes. Malgré sa simplicité séduisante, cette approche n’est pas du

tout satisfaisante. Cependant, comme on peut le constater, cette approche ne tient absolu-

ment pas compte de l’objectif de l’employeur, qui est de sélectionner de bons candidats, et

elle est également injuste pour les candidats qui ont consacré des efforts à l’acquisition de

compétences pour le poste. Dans ce travail, nous proposons une manière équitable de com-

parer les candidats de différents groupes via le rang relatif, c’est-à-dire le rang (ou le quantile)

de la récompense par rapport à la distribution des récompenses du groupe du candidat. Nous

appelons une politique group meritocratic fair (GMF) si elle sélectionne toujours un candidat

avec le rang relatif le plus élevé. Une telle politique est méritocratique mais uniquement en

termes de performance au sein du groupe. Une idée très proche a été introduite dans Kearns

et al. (2017) pour les situations où les récompenses des candidats sont disponibles avant la

sélection, alors que nous ne connaissons pas de notion similaire dans la littérature sur les
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bandits à bras multiples.

Une politique GMF nécessite la connaissance du rang relatif de chaque candidat, qui n’est

pas directement observé par l’agent. qui n’est pas directement observé par l’agent et dépend

du modèle de récompense sous-jacent et de la distribution des récompenses.

Ces dernières années, l’équité algorithmique a fait l’objet d’une grande attention, devenant

un vaste domaine de recherche en apprentissage automatique. Le risque que les algorithmes

d’apprentissage amplifient les préjugés préexistants et causent du tort aux êtres humains

a incité les chercheurs à étudier des solutions pour atténuer ou supprimer l’injustice du pré-

dicteur appris, voir Barocas et al. (2018); Calmon et al. (2017); Chierichetti et al. (2017); Donini

et al. (2018); Dwork et al. (2018); Hardt et al. (2016) et les références qui y figurent. L’équité

dans les problèmes de décision séquentielle (voir Zhang and Liu (2021) pour une étude) est

généralement divisée en deux catégories : l’équité de groupe (GF) et l’équité individuelle.

Nous donnons ci-dessous un aperçu de ces notions.

L’équité de groupe exige qu’une certaine mesure statistique soit (approximativement) égale

entre les différents groupes sensibles. Un exemple important et pertinent pour ce travail est

la parité démographique, qui exige que la probabilité que la politique sélectionne un candidat

d’un certain groupe soit la même pour tous les groupes. Une notion similaire est utilisée par

Chen et al. (2020); Patil et al. (2020), où la probabilité que la politique sélectionne un can-

didat doit toujours être supérieure à un seuil donné pour tous les candidats. Li et al. (2019)

imposent une exigence plus faible concernant la fraction attendue de candidats sélectionnés

dans chaque groupe. D’autres exemples de GF dans les problèmes de décision séquentielle

sont : chances égales (Bechavod et al., 2019) et chances égales. (Blum et al., 2018). Sous

certaines hypothèses sur les distributions des contextes, la politique GMF et la politique avide

que nous proposons satisfont des variantes de la parité démographique à chaque tour.

L’équité individuelle peut être divisée en deux catégories : l’équité par la sensibilisation

(FA) (Liu et al., 2017; Wang et al., 2021) et l’équité méritocratique (MF) (Joseph et al., 2018,

2016). L’équité méritocratique repose sur l’idée que des individus similaires doivent être traités

de manière similaire et est conçue pour éviter les scénarios du type "le gagnant prend tout",

dans lesquels certains individus ne peuvent pas être sélectionnés lorsqu’ils ont une récom-

pense inférieure à celle des autres membres du pool, même si la différence entre les récom-

penses est très faible. Par exemple, Wang et al. (2021) propose une politique où la probabilité

de sélectionner un contexte plutôt qu’un autre est plus faible lorsque le contexte a une récom-

pense inférieure, mais n’est jamais nulle. La MF exige plutôt que les individus moins qualifiés

ne soient pas favorisés par rapport aux plus qualifiés, ce qui pourrait se produire pendant le

processus d’apprentissage. Par exemple, Joseph et al. (2016) propose un algorithme basé

sur les intervalles de confiance, où si l’incertitude entre les meilleurs bras est trop élevée,

le bras est sélectionné uniformément au hasard. Cela garantit une équité méritocratique à

chaque tour mais a un coût en termes de regret.

Une notion d’équité notable qui ne relève pas de GF et IF est Gillen et al. (2018), où l’idée

est que l’on peut seulement "reconnaître l’injustice quand on la voit". Ils supposent qu’il existe
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un oracle qui peut dire à l’agent pour quels candidats choisis le choix était injuste.

Notre définition de l’équité se situe entre l’équité de groupe et l’équité méritocratique. Elle

est méritocratique car elle stipule qu’un candidat ayant un rang relatif plus mauvais qu’un

autre ne devrait jamais être sélectionné. Elle est également basée sur les groupes puisque les

rangs relatifs dépendent directement de la distribution des récompenses de chaque groupe.

Une idée similaire d’équité basée sur le rang relatif a été introduite dans Kearns et al. (2017),

qui étudie le problème de la sélection de candidats de différents groupes sur la base de leur

score à valeur scalaire lorsque les scores entre les groupes sont incomparables (par exemple,

le nombre de citations dans différents domaines de recherche). Contrairement à notre travail,

où les récompenses (bruyantes) ne sont observées que pour les candidats sélectionnés, dans

Kearns et al. (2017) les scores non bruyants de tous les candidats sont accessibles avant la

sélection. Cette différence rend l’estimation du rang relatif plus simple dans Kearns et al.

(2017), car les CDF des récompenses peuvent être estimées plus efficacement.

Par exemple, Wang et al. (2021) propose une politique où la probabilité de sélectionner

un contexte plutôt qu’un autre est plus grande lorsque le contexte a une plus grande récom-

pense estimée, mais n’est jamais nulle. Cependant, cette probabilité peut être très faible si

deux armes ont des récompenses qui sont toujours très éloignées. Un moyen sans doute

plus direct d’éviter cet effet serait de s’appuyer sur des notions d’équité de groupe. Par exem-

ple, puisque chaque bras correspond à un groupe différent, une politique satisfait à la parité

démographique si elle sélectionne chaque bras avec une probabilité égale. Sans hypothèses

supplémentaires, la seule politique qui satisfait cette propriété est celle qui sélectionne chaque

bras uniformément au hasard à chaque tour, indépendamment des contextes.

1.10 Preview of the contributions

Chapter 2: Exploiting higher order smoothness in derivative-free optimization
and continuous bandits

This chapter is based on the paper "Exploiting higher order smoothness in derivative-free

optimization and continuous" Akhavan et al. (2020), by Arya Akhavan, Massimiliano Pontil,

and Alexandre Tsybakov, in Advances in Neural Information Processing Systems, 33.

We study the problem of zero-order optimization of a strongly convex function. The goal is

to find the minimizer of the function by a sequential exploration of its values, under measure-

ment noise. We study the impact of higher order smoothness properties of the function on the

optimization error and on the cumulative regret. To solve this problem we consider a random-

ized approximation of the projected gradient descent algorithm. The gradient is estimated by a

randomized procedure involving two function evaluations and a smoothing kernel. We derive

upper bounds for this algorithm both in the constrained and unconstrained settings and prove

minimax lower bounds for any sequential search method. Our results imply that the zero-order

algorithm is nearly optimal in terms of sample complexity and the problem parameters. Based
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on this algorithm, we also propose an estimator of the minimum value of the function achieving

almost sharp oracle behavior. We compare our results with the state-of-the-art, highlighting a

number of key improvements.

Chapter 3: Distributed zero-order optimization under adversarial noise

This chapter is based on the paper "Distributed Zero-Order Optimization under Adversarial

Noise" Akhavan et al. (2021), by Arya Akhavan, Massimiliano Pontil, and Alexandre Tsybakov,

in Advances in Neural Information Processing Systems, 34.

We study the problem of distributed zero-order optimization for a class of strongly convex

functions. They are formed by the average of local objectives, associated to different nodes

in a prescribed network. We propose a distributed zero-order projected gradient descent al-

gorithm to solve the problem. Exchange of information within the network is permitted only

between neighbouring nodes. An important feature of our procedure is that it can query only

function values, subject to a general noise model, that does not require zero mean or indepen-

dent errors. We derive upper bounds for the average cumulative regret and optimization error

of the algorithm which highlight the role played by a network connectivity parameter, the num-

ber of variables, the noise level, the strong convexity parameter, and smoothness properties

of the local objectives. The bounds indicate some key improvements of our method over the

state-of-the-art, both in the distributed and standard zero-order optimization settings. We also

comment on lower bounds and observe that the dependency over certain function parameters

in the bound is nearly optimal.

Chapter 4: A gradient estimator via L1-randomization for online zero-order op-
timization with two point feedback

This chapter is based on the paper "A gradient estimator via L1-randomization for online zero-

order optimization with two point feedback", by Arya Akhavan, Evgenii Chzhen, Massimiliano

Pontil, and Alexandre Tsybakov, Akhavan et al. (2022a) to appear in Advances in Neural

Information Processing Systems, 35.

This chapter studies online zero-order optimization of convex and Lipschitz functions. We

present a novel gradient estimator based on two function evaluations and randomization on

the ℓ1-sphere. Considering different geometries of feasible sets and Lipschitz assumptions

we analyse online dual averaging algorithm with our estimator in place of the usual gradient.

We consider two types of assumptions on the noise of the zero-order oracle: Canceling noise

and adversarial noise. We provide an anytime and completely data-driven algorithm, which is

adaptive to all parameters of the problem. In the case of canceling noise that was previously

studied in the literature, our guarantees are either comparable or better than state-of-the-art

bounds obtained by Duchi et al. (2015) and Shamir (2017) for non-adaptive algorithms. Our

analysis is based on deriving a new weighted weighted Poincaré type inequality for the uniform
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measure on the ℓ1-sphere with explicit constants, which may be of independent interest.

Chapter 5: Zero-order optimization of highly smooth functions: improved anal-
ysis and a new algorithm

This chapter is based on a joint work with Evgenii Chzhen, Massimiliano Pontil, and Alexandre

Tsybakov.

This chapter studies minimization problems with zero-order noisy oracle information under

the assumption that the objective function is highly smooth and possibly satisfies additional

properties. We consider two kinds of zero-order projected gradient descent algorithms, which

differ in the form of the gradient estimator. The first algorithm uses a gradient estimator based

on randomization on the ℓ2 sphere, and smoothing kernel due to Bach and Perchet (2016)

and it has been used for zero-order optimization of strongly convex functions. We present

an improved analysis of this algorithm for the same class of functions and we derive rates

of convergence for more general function classes. In particular, we consider functions which

satisfy the Polyak-Łojasiewicz condition instead of strong convexity, and the larger class of

highly smooth non-convex functions. The second algorithm is based on ℓ1-type randomization.

We show that this novel algorithm enjoys similar theoretical guarantees as the first one and,

in the case of noiseless oracle, it enjoys better bounds. The improvements are achieved by

new bounds on bias and variance for both algorithms, which are obtained via Poincaré type

inequalities for uniform distributions on ℓ1 or ℓ2 spheres. The optimality of the upper bounds is

discussed and a slightly more general lower bound than in Chapter 2 is presented.

Chapter 6: Zero-order optimization of highly smooth functions in a passive
scheme

This chapter is based on the paper "Estimating the minimizer and the minimum value of a re-

gression function under passive design", by Arya Akhavan, Davit Gogolashvili, and Alexandre

Tsybakov, Akhavan et al. (2022b), submitted to Electronic Journal of Statistics.

We propose a new method for estimating the minimizer x∗ and the minimum value f∗ of

a smooth and strongly convex regression function f from the observations contaminated by

random noise. Our estimator zn of the minimizer x∗ is based on a version of the projected gra-

dient descent with the gradient estimated by a regularized local polynomial algorithm. Next,

we propose a two-stage procedure for estimation of the minimum value f∗ of regression func-

tion f . At the first stage, we construct an accurate enough estimator of x∗, which can be, for

example, zn. At the second stage, we estimate the function value by at the point obtained

at the first stage using a rate optimal nonparametric procedure. We derive non-asymptotic

upper bounds for the quadratic risk and optimization error of zn, and for the risk of estimating

f∗. We establish minimax lower bounds showing that, under certain choice of parameters,

the proposed algorithms achieve the minimax optimal rates of convergence on the class of
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smooth and strongly convex functions.

Chapter 7: Group meritocratic fairness in linear contextual bandits

This chapter is based on the paper "Group meritocratic fairness in linear contextual bandits",

by Riccardo Grazzi, Arya Akhavan, John Isak Texas Falk, Leonardo Cella, and Massimiliano

Pontil, Grazzi et al. (2022) to appear in Advances in Neural Information Processing Systems,

35.

We study the linear contextual bandit problem where an agent has to select one candidate

from a pool and each candidate belongs to a sensitive group. In this setting, candidates’

rewards may not be directly comparable between groups, for example when the agent is an

employer hiring candidates from different ethnic groups and some groups have a lower reward

due to discriminatory bias and/or social injustice. We propose a notion of fairness that states

that the agent’s policy is fair when it selects a candidate with highest relative rank, which

measures how good the reward is when compared to candidates from the same group. This

is a very strong notion of fairness, since the relative rank is not directly observed by the agent

and depends on the underlying reward model and on the distribution of rewards. Thus we

study the problem of learning a policy which approximates a fair policy under the condition that

the contexts are independent between groups and the distribution of rewards of each group is

absolutely continuous. In particular, we design a greedy policy which at each round constructs

a ridge regression estimator from the observed context-reward pairs, and then computes an

estimate of the relative rank of each candidate using the empirical cumulative distribution

function. We prove that the greedy policy achieves, after T rounds, up to log factors and with

high probability, a fair pseudo-regret of order
√
dT , where d is the dimension of the context

vectors. The policy also satisfies demographic parity at each round when averaged over all

possible information available before the selection. We finally show with a proof of concept

simulation and experiments on the US Census data that our policy achieves sub-linear fair

pseudo-regret also in practice.
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Chapter 2

Exploiting higher order smoothness
in derivative-free optimization and
continuous bandits

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Estimation of f(x∗) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Improved bounds for β = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 Discussion and related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.8 Proofs and additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

We study the problem of zero-order optimization of a strongly convex function. The goal is

to find the minimizer of the function by a sequential exploration of its values, under measure-

ment noise. We study the impact of higher order smoothness properties of the function on the

optimization error and on the cumulative regret. To solve this problem we consider a random-

ized approximation of the projected gradient descent algorithm. The gradient is estimated by a

randomized procedure involving two function evaluations and a smoothing kernel. We derive

upper bounds for this algorithm both in the constrained and unconstrained settings and prove

minimax lower bounds for any sequential search method. Our results imply that the zero-order

algorithm is nearly optimal in terms of sample complexity and the problem parameters. Based

on this algorithm, we also propose an estimator of the minimum value of the function achieving

almost sharp oracle behavior. We compare our results with the state-of-the-art, highlighting a

number of key improvements.
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2.1 Introduction

We study the problem of zero-order stochastic optimization, in which we aim to minimize

an unknown strongly convex function via a sequential exploration of its function values, un-

der measurement error, and a closely related problem of continuous (or continuum-armed)

stochastic bandits. These problems have received significant attention in the literature, see

Agarwal et al. (2010, 2011); Bach and Perchet (2016); Bartlett et al. (2019); Belloni et al.

(2015); Bubeck and Cesa-Bianchi (2012); Bubeck et al. (2017); Duchi et al. (2015); Dvurechen-

sky et al. (2018); Flaxman et al. (2005); Hu et al. (2016a,b); Jamieson et al. (2012); Locatelli

and Carpentier (2018); Malherbe and Vayatis (2017); Nesterov and Spokoiny (2017); Rakhlin

et al. (2012); Saha and Tewari (2011); Shalev-Shwartz (2012); Shamir (2013, 2017); Wang

et al. (2018b), and are fundamental for many applications in which the derivatives of the func-

tion are either too expensive or impossible to compute. A principal goal of this paper is to

exploit higher order smoothness properties of the underlying function in order to improve the

performance of search algorithms. We derive upper bounds on the estimation error for a class

of projected gradient-like algorithms, as well as close matching lower bounds, that character-

ize the role played by the number of iterations, the strong convexity parameter, the smoothness

parameter, the number of variables, and the noise level.

Let f : Rd → R be the function that we wish to minimize over a closed convex subset Θ

of Rd. Our approach, outlined in Algorithm 1, builds upon previous work in which a sequential

algorithm queries at each iteration a pair of function values, under a general noise model.

Specifically, at iteration t the current guess xt for the minimizer of f is used to build two

perturbations xt + δt and xt − δt, where the function values are queried subject to additive

measurement errors ξt and ξ′t, respectively. The values δt can be chosen in different ways. In

this paper, we set δt = htrrζt (Line 1), where ht > 0 is a suitably chosen small parameter, rt is

random and uniformly distributed on [−1, 1], and ζt is uniformly distributed on the unit sphere.

The estimate for the gradient is then computed at Line 2 and used inside a projected gradient

method scheme to compute the next exploration point. We introduce a suitably chosen kernel

K that allows us to take advantage of higher order smoothness of f .

The idea of using randomized procedures for derivative-free stochastic optimization can be

traced back to Nemirovski and Yudin (Nemirovsky and Yudin, 1983, Sec. 9.3) who suggested

an algorithm with one query per step at point xt + htζt, with ζt uniform on the unit sphere. Its

versions with one, two or more queries were studied in several papers including Agarwal et al.

(2010); Bach and Perchet (2016); Flaxman et al. (2005); Shamir (2017). Using two queries

per step leads to better performance bounds as emphasized in Agarwal et al. (2010); Bach

and Perchet (2016); Duchi et al. (2015); Flaxman et al. (2005); Polyak and Tsybakov (1990);

Shamir (2017). Randomizing sequences other than uniform on the sphere were also explored:

ζt uniformly distributed on a cube Polyak and Tsybakov (1990), Gaussian ζt Nesterov (2011);

Nesterov and Spokoiny (2017), ζt uniformly distributed on the vertices of a cube Shamir (2013)

or satisfying some general assumptions Dippon (2003a); Duchi et al. (2015). Except for Bach
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Algorithm 1 Zero-Order Stochastic Projected Gradient

Requires Kernel K : [−1, 1] → R, step size ηt > 0 and parameter ht, for t = 1, . . . , T

Initialization Generate scalars r(1), . . . , r(T ) uniformly on the interval [−1, 1], vectors
ζ(1), . . . , ζ(T ) uniformly distributed on the unit sphere Sd = {ζ ∈ Rd : ∥ζ∥ = 1}, and choose
x(1) ∈ Θ

For t = 1, . . . , T

1. Let y(t) = f(x(t) + htr(t)ζ(t)) + ξ(t) and y′(t) = f(x(t)− htr(t)ζ(t)) + ξ′(t),

2. Define ĝ(t) = d
2ht

(y(t)− y′(t))ζ(t)K(r(t))

3. Update xt+1 = xt − ηtĝ(t)

Return (x(t))Tt=1

and Perchet (2016); Dippon (2003a); Polyak and Tsybakov (1990), these works study settings

with low smoothness of f (2-smooth or less) and do not invoke kernels K (i.e. K(·) ≡ 1

and rt ≡ 1 in Algorithm 1). The use of randomization with smoothing kernels was proposed

by Polyak and Tsybakov Polyak and Tsybakov (1990) and further developed by Dippon Dip-

pon (2003a), and Bach and Perchet Bach and Perchet (2016) to whom the current form of

Algorithm 1 is due.

In this paper we consider higher order smooth functions f satisfying the generalized Hölder

condition with parameter β ≥ 2, cf. inequality (2.1) below. For integer β, this parameter can

be roughly interpreted as the number of bounded derivatives. Furthermore, we assume that

f is α-strongly convex. For such functions, we address the following two main questions:

(a) What is the performance of Algorithm 1 in terms of the cumulative regret and optimiza-

tion error, namely what is the explicit dependency of the rate on the main parameters

d, T, α, β?

(b) What are the fundamental limits of any sequential search procedure expressed in terms

of minimax optimization error?

To handle task (a), we prove upper bounds for Algorithm 1, and to handle (b), we prove

minimax lower bounds for any sequential search method.

Contributions. Our main contributions can be summarized as follows: i) Under an adver-

sarial noise assumption (cf. Assumption 2.2.1 below), we establish for all β ≥ 2 upper bounds

of the order d2

α T
−β−1

β for the optimization risk and d2

α T
1
β for the cumulative regret of Algorithm

1, both for its constrained and unconstrained versions; ii) In the case of independent noise sat-

isfying some natural assumptions (including the Gaussian noise), we prove a minimax lower

bound of the order d
αT

−β−1
β for the optimization risk when α is not very small. This shows

that to within the factor of d the bound for Algorithm 1 cannot be improved for all β ≥ 2; iii)
We show that, when α is too small, below some specified threshold, higher order smoothness

does not help to improve the convergence rate. We prove that in this regime the rate cannot be

faster than d/
√
T , which is not better (to within the dependency on d) than for derivative-free

minimization of simply convex functions Agarwal et al. (2011); Hu et al. (2016b); iv) For β = 2,
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we obtain a bracketing of the optimal rate between O(d/
√
αT ) and Ω(d/(max(1, α)

√
T )). In a

special case when α is a fixed numerical constant, this validates a conjecture in Shamir (2013)

(claimed there as proved fact) that the optimal rate for β = 2 scales as d/
√
T ; v) We propose

a simple algorithm of estimation of the value minx f(x) requiring three queries per step and

attaining the optimal rate 1/
√
T for all β ≥ 2. The best previous work on this problem Belitser

et al. (2012) suggested a method with exponential complexity and proved a bound of the order

c(d, α)/
√
T for β > 2 where c(d, α) is an unspecified constant.

Notation. Throughout the paper we use the following notation. We let ⟨·, ·⟩ and ∥ · ∥ be the

standard inner product and Euclidean norm on Rd, respectively. For every close convex set

Θ ⊂ Rd and x ∈ Rd we denote by ProjΘ(x) = argmin{∥z−x∥ : z ∈ Θ} the Euclidean projection

of x to Θ. We assume everywhere that T ≥ 2. We denote by Fβ(L) the class of functions

with Hölder smoothness β (inequality (2.1) below). Recall that f is α-strongly convex for some

α > 0 if, for any x, y ∈ Rd it holds that f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + α
2 ∥x − y∥2. We further

denote by Fα,β(L) the class of all α-strongly convex functions belonging to Fβ(L).

Organization. We start in Section 2.2 with some preliminary results on the gradient es-

timator. Section 2.3 presents our upper bounds for Algorithm 1, both in the constrained and

unconstrained case. In Section 2.4 we observe that a slight modification of Algorithm 1 can be

used to estimated the minimum value (rather than the minimizer) of f . Section 2.4 presents

improved upper bounds in the case β = 2. In Section 2.6 we establish minimax lower bounds.

Finally, Section 2.7 contrasts our results with previous work in the literature and discusses

future directions of research.

2.2 Preliminaries

In this section, we give the definitions, assumptions and basic facts that will be used through-

out the paper. For β > 0, let ℓ be the greatest integer strictly less than β. We denote by Fβ(L)

the set of all functions f : Rd → R that are ℓ times differentiable and satisfy, for all x, z ∈ Θ the

Hölder-type condition ∣∣∣∣f(z)− ∑
0≤|m|≤ℓ

1

m!
Dmf(x)(z − x)m

∣∣∣∣ ≤ L∥z − x∥β, (2.1)

where L > 0, the sum is over the multi-index m = (m1, ...,md) ∈ Nd, we used the notation

m! = m1! · · ·md!, |m| = m1 + · · ·+md, and we defined

Dmf(x)νm =
∂|m|f(x)

∂m1x1 · · · ∂mdxd
νm1
1 · · · νmd

d , ∀ν = (ν1, . . . , νd) ∈ Rd.
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In this paper, we assume that the gradient estimator defined by Algorithm 1 uses a kernel

function K : [−1, 1] → R satisfying∫
K(u)du = 0,

∫
uK(u)du = 1,

∫
ujK(u)du = 0, j = 2, . . . , ℓ,

∫
|u|β|K(u)|du <∞.

Examples of such kernels obtained as weighted sums of Legendre polynomials are given in

Polyak and Tsybakov (1990) and further discussed in Bach and Perchet (2016).

Assumption 2.2.1. It holds, for all t ∈ {1, . . . , T}, that: (i) the random variables ξt and ξ′t

are independent from ζt and from rt, and the random variables ζt and rt are independent; (ii)

E[ξ2t ] ≤ σ2, and E[(ξ′t)2] ≤ σ2, where σ ≥ 0.

Note that we do not assume ξt and ξ′t to have zero mean. Moreover, they can be non-

random and no independence between noises on different steps is required, so that the setting

can be considered as adversarial. Having such a relaxed set of assumptions is possible

because of randomization that, for example, allows the proofs go through without assuming

the zero mean noise.

We will also use the following assumption.

Assumption 2.2.2. Function f : Rd → R is 2-smooth, that is, differentiable on Rd and such

that ∥∇f(x)−∇f(x′)∥ ≤ L̄∥x− x′∥ for all x, x′ ∈ Rd, where L̄ > 0.

It is easy to see that this assumption implies that f ∈ F2(L̄/2). The following lemma gives

a bound on the bias of the gradient estimator.

Lemma 2.2.3. Let f ∈ Fβ(L), with β > 1 and let Assumption 2.2.1 hold. Let ĝt and xt be

defined by Algorithm 1 and let κβ =
∫
|u|β|K(u)|du. Then

∥E[ĝt |xt]−∇f(xt)∥ ≤ κβLdh
β−1
t .

If K be a weighted sum of Legendre polynomials, κβ ≤ 2
√
2β, with β ≥ 1 (see e.g., (Bach

and Perchet, 2016, Appendix A.3)).

The next lemma provides a bound on the stochastic variability of the estimated gradient by

controlling its second moment.

Lemma 2.2.4. Let Assumption 2.2.1 hold, let ĝt and xt be defined by Algorithm 1 and set

κ =
∫
K2(u)du. Then

(i) If Θ ⊆ Rd, ∇f(x∗) = 0 and Assumption 2.2.2 holds,

E[∥ĝt∥2 |xt] ≤ 9κL̄2

(
d∥xt − x∗∥2 + d2h2t

8

)
+

3κd2σ2

2h2t
,
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(ii) If f ∈ F2(L) and Θ is a closed convex subset of Rd such that max
x∈Θ

∥∇f(x)∥ ≤ G, then

E[∥ĝt∥2 |xt] ≤ 9κ

(
G2d+

L2d2h2t
2

)
+

3κd2σ2

2h2t
.

2.3 Upper bounds

In this section, we provide upper bounds on the cumulative regret and on the optimization

error of Algorithm 1, which are defined as

T∑
t=1

E[f(xt)− f(x)],

and

E[f(x̂T )− f(x∗)],

respectively, where x ∈ Θ and x̂T is an estimator after T queries. Note that the provided upper

bound for cumulative regret is valid for any x ∈ Θ.

First we consider Algorithm 1 when the convex set Θ is bounded (constrained case).

Theorem 2.3.1. (Upper Bound, Constrained Case.) Let f ∈ Fα,β(L) with α,L > 0 and β ≥ 2.

Let Assumptions 2.2.1 and 2.2.2 hold and let Θ be a convex compact subset of Rd. Assume

that maxx∈Θ ∥∇f(x)∥ ≤ G. If σ > 0 then the cumulative regret of Algorithm 1 with

ht =

(
3κσ2

2(β − 1)(κβL)2

) 1
2β

t
− 1

2β , ηt =
2

αt
, t = 1, . . . , T

satisfies

∀x ∈ Θ :
T∑
t=1

E[f(xt)− f(x)] ≤ 1

α

(
d2
(
A1T

1/β +A2

)
+A3d log T

)
, (2.2)

where A1 = 3β(κσ2)
β−1
β (κβL)

2
β , A2 = c̄L̄2(σ/L)

2
β + 9κG2/d with constant c̄ > 0 depending

only on β, and A3 = 9κG2. The optimization error of averaged estimator x̄T = 1
T

∑T
t=1 xt

satisfies

E[f(x̄T )− f(x∗)] ≤ 1

α

(
d2

(
A1

T
β−1
β

+
A2

T

)
+A3

d log T

T

)
, (2.3)

where x∗ = argminx∈Θ f(x). If σ = 0, then the cumulative regret and the optimization error of

Algorithm 1 with any ht chosen small enough and ηt = 2
αt satisfy the bounds (2.2) and (2.3),

respectively, with A1 = 0, A2 = 9κG2/d and A3 = 10κG2.

Proof sketch. We use the definition of Algorithm 1 and strong convexity of f to obtain an

upper bound for
∑T

t=1 E[f(xt) − f(x)|xt], which depends on the bias term
∑T

t=1 ∥E[ĝt |xt] −
∇f(xt)∥ and on the stochastic error term

∑T
t=1 E[∥ĝt∥2]. By substituting ht (that is derived

from balancing the two terms) and ηt in Lemmas 2.2.3 and 2.2.4 we obtain upper bounds for
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∑T
t=1 ∥E[ĝt |xt]−∇f(xt)∥ and

∑T
t=1 E[∥ĝt∥2] that imply the desired upper bound for

∑T
t=1 E[f(xt)−

f(x)|xt] due to a recursive argument in the spirit of Bartlett et al. (2008).

In the non-noisy case (σ = 0) we get the rate d
α log T for the cumulative regret, and d

α
log T
T

for the optimization error. In what concerns the optimization error, this rate is not optimal

since one can achieve much faster rate under strong convexity Nesterov and Spokoiny (2017).

However, for the cumulative regret in our derivative-free setting it remains an open question

whether the result of Theorem 2.3.1 can be improved. Previous papers on derivative-free

online methods with no noise (Agarwal et al., 2010; Duchi et al., 2015; Flaxman et al., 2005)

provide slower rates than (d/α) log T . The best known so far is (d2/α) log T , cf. (Agarwal et al.,

2010, Corollary 5). We may also notice that the cumulative regret bounds of Theorem 2.3.1

trivially extend to the case when we query functions ft depending on t rather than a single

f . Another immediate fact is that on the r.h.s. of inequalities (2.2) and (2.3) we can take the

minimum with GBT and GB, respectively, where B is the Euclidean diameter of Θ. Finally, the

factor log T in the bounds for the optimization error can be eliminated by considering averaging

from T/2 to T rather than from 1 to T , in the spirit of Rakhlin et al. (2012). We refer to Section

2.8 for the details and proofs of these facts.

We now study the performance of Algorithm 1 when Θ = Rd. In this case we make the

following choice for the parameters ht and ηt in Algorithm 1:

ht = T
− 1

2β , ηt =
1

αT
, t = 1, . . . , T0,

ht = t
− 1

2β , ηt =
2

αt
, t = T0 + 1, . . . , T,

(2.4)

where T0 = max
{
k ≥ 0 : C1L̄

2d > α2k/2
}

and C1 is a positive constant1 depending only on

the kernel K(·) (this is defined in the proof of Theorem 2.3.2 in Section 2.8) and recall L̄ is the

Lipschitz constant on the gradient ∇f . Finally, define the estimator

x̄T0,T =
1

T − T0

T∑
t=T0+1

xt. (2.5)

Theorem 2.3.2. (Upper Bounds, Unconstrained Case.) Let f ∈ Fα,β(L) with α,L > 0

and β ≥ 2. Let Assumptions 2.2.1 and 2.2.2 hold. Assume also that α >
√
C∗d/T , where

C∗ > 72κL̄2. Let xt’s be the updates of Algorithm 1 with Θ = Rd, ht and ηt as in (2.4) and a

non-random x1 ∈ Rd. Then the estimator defined by (2.5) satisfies

E[f(x̄T0,T )− f(x∗)] ≤ CκL̄2 d

αT
∥x1 − x∗∥2 + C

d2

α

(
(κβL)

2 + κ
(
L̄2 + σ2

))
T
−β−1

β

where C > 0 is a constant depending only on β and x∗ = argminx∈Rd f(x).
1If T0 = 0 the algorithm does not use (2.4). Assumptions of Theorem 2.3.2 are such that condition T > T0

holds.
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Proof sketch. As in the proof of Theorem 2.3.1, we apply Lemmas 2.2.3 and 2.2.4. But we can

only use Lemma 2.2.4(i) and not Lemma 2.2.4(ii) and thus the bound on the stochastic error

now involves ∥xt − x∗∥2. So, after taking expectations, we need to control an additional term

containing rt = E[∥xt − x∗∥2]. However, the issue concerns only small t (t ≤ T0 ∼ d2/α) since

for bigger t this term is compensated due to the strong convexity with parameter α >
√
C∗d/T .

This motivates the method where we use the first T0 iterations to get a suitably good (but not

rate optimal) bound on rT0+1 and then proceed analogously to Theorem 2.3.1 for iterations

t ≥ T0 + 1.

2.4 Estimation of f(x∗)

In this section, we apply the above results to estimation of the minimum value f(x∗) =

minx∈Θ f(x) for functions f in the class Fα,β(L). The literature related to this problem as-

sumes that xt’s are either i.i.d. with density bounded away from zero on its support Tsybakov

(1990a) or xt’s are chosen sequentially Belitser et al. (2012); Mokkadem and Pelletier (2007).

In the fist case, from the results in Tsybakov (1990a) one can deduce that f(x∗) cannot be

estimated better than at the slow rate T−β/(2β+d). For the second case, which is our setting,

the best result so far is obtained in Belitser et al. (2012). The estimator of f(x∗) in Belitser

et al. (2012) is defined via a multi-stage procedure whose complexity increases exponentially

with the dimension d and it is shown to achieve (asymptotically, for T greater than an exponent

of d) the c(d, α)/
√
T rate for functions in Fα,β(L) with β > 2. Here, c(d, α) is some constant

depending on d and α in an unspecified way.

Observe that f(x̄T ) is not an estimator since it depends on the unknown f , so Theorem

2.3.1 does not provide a result about estimation of f(x∗). In this section, we show that using

the computationally simple Algorithm 1 and making one more query per step (that is, having

three queries per step in total) allows us to achieve the 1/
√
T rate for all β ≥ 2 with no

dependency on the dimension in the main term. Note that the 1/
√
T rate cannot be improved.

Indeed, one cannot estimate f(x∗) with a better rate even using the ideal but non-realizable

oracle that makes all queries at point x∗. That is, even if x∗ is known and we sample T times

f(x∗) + ξt with independent centered variables ξt, the error is still of the order 1/
√
T .

In order to construct our estimator, at any step t of Algorithm 1 we make along with yt and

y′t the third query y′′t = f(xt)+ ξ′′t , where ξ′′t is some noise and xt are the updates of Algorithm

1. We estimate f(x∗) by M̂ = 1
T

∑T
t=1 y

′′
t . The properties of estimator M̂ are summarized in

the next theorem, which is an immediate corollary of Theorem 2.3.1.

Theorem 2.4.1. Let the assumptions of Theorem 2.3.1 be satisfied. Let σ > 0 and assume

that (ξ′′t )
T
t=1 are independent random variables with E[ξ′′t ] = 0 and E[(ξ′′t )2] ≤ σ2 for t =
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1, . . . , T . If f attains its minimum at point x∗ ∈ Θ, then

E|M̂ − f(x∗)| ≤ σ

T
1
2

+
1

α

(
d2

(
A1

T
β−1
β

+
A2

T

)
+A3

d log T

T

)
.

Remark 2.4.2. With three queries per step, the risk (error) of the oracle that makes all queries

at point x∗ does not exceed σ/
√
3T . Thus, for β > 2 the estimator M̂ achieves asymptotically

as T → ∞ the oracle risk up to a numerical constant factor. We do not obtain such a sharp

property for β = 2, in which case the remainder term in Theorem 2.4.1 accounting for the

accuracy of Algorithm 1 is of the same order as the main term σ/
√
T .

Note that in Theorem 2.4.1 the noises (ξ′′t )
T
t=1 are assumed to be independent and zero

mean random variables, which is essential to obtain the 1/
√
T rate. Nevertheless, we do not

require independence between the noises (ξ′′t )
T
t=1 and the noises in the other two queries

(ξt)
T
t=1 and (ξ′t)

T
t=1. Another interesting point is that for β = 2 the third query is not needed

and f(x∗) is estimated with the 1/
√
T rate either by M̂ = 1

T

∑T
t=1 yt or by M̂ = 1

T

∑T
t=1 y

′
t.

This is an easy consequence of the above argument, the property (2.16) – see Lemma 2.8.3

in Section 2.8 – which is specific for the case β = 2, and the fact that the optimal choice of ht
is of order t−1/4 for β = 2.

2.5 Improved bounds for β = 2

In this section, we consider the case β = 2 and obtain improved bounds that scale as d rather

than d2 with the dimension in the constrained optimization setting analogous to Theorem 2.3.1.

First note that for β = 2 we can simplify the algorithm. The use of kernel K is redundant when

β = 2, and therefore in this section we define the approximate gradient as

ĝt =
d

2ht
(yt − y′t)ζt, (2.6)

where yt = f(xt + htζt) + ξt and y′t = f(xt − htζt) + ξ′t. A well-known observation that goes

back to Nemirovsky and Yudin (1983) consists in the fact that ĝt defined in (2.6) is an unbiased

estimator of the gradient at point xt of the surrogate function f̂t defined by

f̂t(x) = Ef(x+ htζ̃), ∀x ∈ Rd,

where the expectation E is taken with respect to the random vector ζ̃ uniformly distributed on

the unit ball Bd = {u ∈ Rd : ∥u∥ ≤ 1}. The properties of the surrogate f̂t are described in

Lemmas 2.8.2 and 2.8.3 presented in Section 2.8.

The improvement in the rate that we get for β = 2 is due to the fact that we can consider

Algorithm 1 with ĝt defined in (2.6) as the SGD for the surrogate function. Then the bias of

approximating f by f̂t scales as h2t , which is smaller than the squared bias of approximating
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the gradient arising in the proof of Theorem 2.3.1 that scales as d2h2(β−1)
t = d2h2t when β = 2.

On the other hand, the stochastic variability terms are the same for both methods of proof.

This explains the gain in dependency on d. However, this technique does not work for β > 2

since then the error of approximating f by f̂t, which is of the order hβt (with ht small), becomes

too large compared to the bias d2h2(β−1)
t of Theorem 2.3.1.

Theorem 2.5.1. Let f ∈ Fα,2(L) with α,L > 0. Let Assumption 2.2.1 hold and let Θ be a con-

vex compact subset of Rd. Assume that maxx∈Θ ∥∇f(x)∥ ≤ G. If σ > 0 then for the updates

xt as in item 3 of Algorithm 1 with ĝt defined in (2.6) and parameters ht =
(

3d2σ2

4Lαt+9L2d2

)1/4
and ηt = 1

αt we have

∀x ∈ Θ : E
T∑
t=1

(
f(xt)− f(x)

)
≤ min

(
GBT, 2

√
3Lσ

d√
α

√
T +A4

d2

α
log T

)
, (2.7)

where B is the Euclidean diameter of Θ and A4 = 6.5Lσ + 22G2/d. Moreover, if x∗ =

argminx∈Θ f(x) the optimization error of averaged estimator x̄T = 1
T

∑T
t=1 xt is bounded as

E[f(x̄T )− f(x∗)] ≤ min

(
GB, 2

√
3Lσ

d√
αT

+A4
d2

α

log T

T

)
. (2.8)

Finally, if σ = 0, then the cumulative regret of the same procedure xt with any ht > 0 chosen

small enough and ηt = 1
αt and the optimization error of its averaged version are of the order

d2

α log T and d2

α
log T
T , respectively.

Note that the terms d2

α log T and d2

α
log T
T appearing in these bounds can be improved to

d
α log T and d

α
log T
T at the expense of assuming that the norm ∥∇f∥ is uniformly bounded by G

not only on Θ but also on a large enough Euclidean neighborhood of Θ. Moreover, the log T

factor in the bounds for the optimization error can be eliminated by considering averaging from

T/2 to T rather than from 1 to T in the spirit of Rakhlin et al. (2012). We refer to Section 2.8 for

the details and proofs of these facts. A major conclusion is that, when σ > 0 and we consider

the optimization error, those terms are negligible with respect to d/
√
αT and thus an attainable

rate is min(1, d/
√
αT ).

We close this section by noting, in connection with the bandit setting, that the bound (2.7)

extends straightforwardly (up to a change in numerical constants) to the cumulative regret of

the form E
∑T

t=1

(
ft(xt ± htζt) − ft(x)

)
, where the losses are measured at the query points

and f depends on t. This fact follows immediately from the proof of Theorem 2.5.1 presented

in Section 2.8 and the property (2.16), see Lemma 2.8.3 in Section 2.8.

2.6 Lower bound

In this section we prove a minimax lower bound on the optimization error over all sequential

strategies that allow the query points depend on the past. For t = 1, . . . , T , we assume that
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yt = f(zt) + ξt and we consider strategies of choosing the query points such that z1 ∈ Rd is

a random variable and zt = Φt(z1, y1, . . . , zt−1, yt−1, ζt) for t ≥ 2, where Φt’s are measurable

functions with values in Rd, and {ζt} is a sequence of random variables with values in some

measurable space (Z,U) (a randomizing sequence) satisfying the condition that ζt is inde-

pendent of (z1, y1, . . . , zt−1, yt−1). We denote by ΠT the set of all such strategies. The noises

ξ1, . . . , ξT are assumed in this section to be independent with cumulative distribution function

F satisfying the condition∫
log
(
dF (u)/dF (u+ v)

)
dF (u) ≤ I0v

2, |v| < v0, (2.9)

for some 0 < I0 <∞, 0 < v0 ≤ ∞, and such that ξt is independent of (z1, y1, . . . , zt−1, yt−1, ζt).

Using the second order expansion of the logarithm w.r.t. v, one can verify that this assumption

is satisfied when F has a smooth enough density with finite Fisher information. For example,

for Gaussian distribution F this condition holds with v0 = ∞. Note that the class ΠT includes

the sequential strategy of Algorithm 1 that corresponds to taking T as an even number, and

choosing zt = xt + ζtrt and zt = xt − ζtrt for even t and odd t, respectively.

Theorem 2.6.1. Let Θ = {x ∈ Rd : ∥x∥ ≤ 1}. For α,L > 0,β ≥ 2, let F ′
α,β denote

the set of functions f that attain their minimum over Rd in Θ and belong to Fα,β(L) ∩ {f :

maxx∈Θ ∥∇f(x)∥ ≤ G}, where G > 2α. Then for any strategy in the class ΠT we have

sup
f∈F ′

α,β

E
[
f(zT )−min

x
f(x)

]
≥ Cmin

(
max(α, T−1/2+1/β),

d√
T
,
d

α
T
−β−1

β

)
, (2.10)

and

sup
f∈F ′

α,β

E
[
∥zT − x∗(f)∥2

]
≥ Cmin

(
1,

d

T
1
β

,
d

α2
T
−β−1

β

)
, (2.11)

where C > 0 is a constant that does not depend of T, d, and α, and x∗(f) is the minimizer of

f on Θ.

The proof is given in Section 2.8. It extends the proof technique of Polyak and Tsybakov

[28], by applying it to more than two probe functions. The proof takes into account dependency

on the dimension d, and on α. The final result is obtained by applying Assouad’s Lemma, see

e.g. Tsybakov (2009).

We stress that the condition G > 2α in this theorem is necessary. It should always hold

if the intersection Fα,β(L) ∩ {f : maxx∈Θ ∥∇f(x)∥ ≤ G} is not empty. Notice also that the

threshold T−1/2+1/β on the strong convexity parameter α plays an important role in bounds

(2.10) and (2.11). Indeed, for α below this threshold, the bounds start to be independent of α.

Moreover, in this regime, the rate of (2.10) becomes min(T 1/β, d)/
√
T , which is asymptotically

d/
√
T and thus not better as function of T than the rate attained for zero-order minimization

of simply convex functions Agarwal et al. (2011); Belloni et al. (2015). Intuitively, it seems rea-

sonable that α-strong convexity should be of no added value for very small α. Theorem 2.6.1
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allows us to quantify exactly how small such α should be. Also, quite naturally, the threshold

becomes smaller when the smoothness β increases.

Finally note that for β = 2 the lower bounds (2.10) and (2.11) are, in the interesting regime

of large enough T , of order d/(max(α, 1)
√
T ) and d/(max(α2, 1)

√
T ), respectively. This high-

lights the near minimax optimal properties of Algorithm 1 in the setting of Theorem 2.5.1.

2.7 Discussion and related work

There is a great deal of attention to zero-order feedback stochastic optimization and convex

bandits problems in the recent literature. Several settings are studied: (i) deterministic in the

sense that the queries contain no random noise and we query functions ft depending on t

rather than f where ft are Lipschitz or 2-smooth Agarwal et al. (2010); Flaxman et al. (2005);

Nesterov (2011); Nesterov and Spokoiny (2017); Saha and Tewari (2011); Shamir (2017);

(ii) stochastic with two-point feedback where the two noisy evaluations are obtained with the

same noise and the noisy functions are Lipschitz or 2-smooth Duchi et al. (2015); Nesterov

(2011); Nesterov and Spokoiny (2017) (this setting does not differ much from (i) in terms of

the analysis and the results); (iii) stochastic, where the noises ξi are independent zero-mean

random variables Agarwal et al. (2011); Bach and Perchet (2016); Bartlett et al. (2019); Dip-

pon (2003a); Fabian (1967a); Jamieson et al. (2012); Locatelli and Carpentier (2018); Polyak

and Tsybakov (1990); Shamir (2013). In this paper, we considered a setting, which is more

general than (iii) by allowing for adversarial noise (no independence or zero-mean assumption

in contrast to (iii), no Lipschitz assumption in contrast to settings (i) and (ii)), which are both

covered by our results when the noise is set to zero.

One part of our results are bounds on the cumulative regret, cf. (2.2) and (2.7). We

emphasize that they remain trivially valid if the queries are from ft depending on t instead of

f , and thus cover the setting (i). To the best of our knowledge, there were no such results in

this setting previously, except for Bach and Perchet (2016) that gives bounds with suboptimal

dependency on T in the case of classical (non-adversarial) noise. In the non-noisy case, we

get bounds on the cumulative regret with faster rates than previously known for the setting (i).

It remains an open question whether these bounds can be improved.

The second part of our results dealing with the optimization error E[f(x̄T ) − f(x∗)] is

closely related to the work on derivative-free stochastic optimization under strong convexity

and smoothness assumptions initiated in Fabian (1967a); Polyak and Tsybakov (1990) and

more recently developed in Bach and Perchet (2016); Dippon (2003a); Jamieson et al. (2012);

Shamir (2013). It was shown in Polyak and Tsybakov (1990) that the minimax optimal rate for

f ∈ Fα,β(L) scales as c(α, d)T−(β−1)/β, where c(α, d) is an unspecified function of α and d

(for d = 1 an upper bound of the same order was earlier established in Fabian (1967a)). The

issue of establishing non-asymptotic fundamental limits as function of the main parameters of

the problem (α, d and T ) was first addressed in Jamieson et al. (2012) giving a lower bound
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Ω(
√
d/T ) for β = 2. This was improved to Ω(d/

√
T ) when α ≍ 1 by Shamir Shamir (2013)

who conjectured that the rate d/
√
T is optimal for β = 2, which indeed follows from our Theo-

rem 2.5.1 (although Shamir (2013) claims the optimality as proved fact by referring to results

in Agarwal et al. (2010), such results cannot be applied in setting (iii) because the noise can-

not be considered as Lipschitz). A result similar to Theorem 2.5.1 is stated without proof in

Bach and Perchet (Bach and Perchet, 2016, Proposition 7) but not for the cumilative regret

and with a suboptimal rate in the non-noisy case. For integer β ≥ 3, Bach and Perchet Bach

and Perchet (2016) present explicit upper bounds as functions of α, d and T with, however,

suboptimal dependency on T except for their Proposition 8 that is problematic (see Section

2.8 for the details). Finally, by slightly modifying the proof of Theorem 2.3.1 we get that the

estimation risk E
[
∥x̄T − x∗∥2

]
is O((d2/α2)T−(β−1)/β), which is to within factor d of the main

term in the lower bound (2.11) (see Section 2.8 for details).

The lower bound in Theorem 2.6.1 is, to the best of our knowledge, the first result providing

non-asymptotic fundamental limits under general configuration of α, d and T . The known

lower bounds Jamieson et al. (2012); Polyak and Tsybakov (1990); Shamir (2013) either give

no explicit dependency on α and d, or treat the special case β = 2 and α ≍ 1. Moreover, as an

interesting consequence of our lower bound we find that, for small strong convexity parameter

α (namely, below the T−1/2+1/β threshold), the best achievable rate cannot be substantially

faster than for simply convex functions, at least for moderate dimensions. Indeed, for such

small α, our lower bound is asymptotically Ω(d/
√
T ) independently of the smoothness index

β and on α, while the achievable rate for convex functions is shown to be d16/
√
T in Agarwal

et al. (2011) and improved to d3.75/
√
T in Belloni et al. (2015) (both up to log-factors). The

gap here is only in the dependency on the dimension. Our results imply that for α above

the T−1/2+1/β threshold, the gap between upper and lower bounds is much smaller. Thus,

our upper bounds in this regime scale as (d2/α)T−(β−1)/β while the lower bound of Theorem

2.6.1 is of the order Ω
(
(d/α)T−(β−1)/β

)
; moreover for β = 2, upper and lower bounds match

in the dependency on d.

We hope that our work will stimulate further study at the intersection of zero-order op-

timization and convex bandits in machine learning. An important open problem is to study

novel algorithms which match our lower bound simultaneously in all main parameters. For

example a class of algorithms worth exploring are those using memory of the gradient in the

spirit of Nesterov accelerated method. Yet another important open problem is to study lower

bounds for the regret in our setting. Finally, it would be valuable to study extensions of our

work to locally strongly convex functions.

2.8 Proofs and additional results

In Section 2.8 we provide some auxiliary results, including those stated in Section 2.2 above.

In Section 2.8 we give proofs of the results which were only stated or whose proof was only
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sketched in the paper. For reader’s convenience all such results are restated below. Section

2.8 contains some comments on previous results in Bach and Perchet (2016). Finally, in

Section 2.8 we present refined versions of Theorems 2.3.1 and 2.5.1.

Auxiliary results

Proof of Lemma 2.2.3. To lighten the presentation and without loss of generality we drop the

lower script “t” in all quantities. Using the Taylor expansion we have

f(x+ hrζ) = f(x) + ⟨∇f(x), hrζ⟩+
∑

2≤|m|≤ℓ

(rh)|m|

m!
D(m)f(x)ζm +R(hrζ),

where by assumption |R(hrζ)| ≤ L∥hrζ∥β = L|r|βhβ. Thus,

E[ĝ|x] = d

h
E
[(

⟨∇f(x), hrζ⟩+
∑

2≤|m|≤ℓ,|m| odd

(rh)|m|

m!
D(m)f(x)ζm +

R(hrζ)−R(−hrζ)
2

)
ζK(r)

]
.

Since ζ is uniformly distributed on the unit sphere we have E[ζζ⊤] = (1/d)Id×d, where Id×d is

the identity matrix. Therefore,

E
[d
h
⟨∇f(x), hζ⟩ζ

]
= ∇f(x).

As
∫
r|m|K(r)dr = 0 for 2 ≤ |m| ≤ ℓ and

∫
rK(r)dr = 1 we conclude that

∥E[ĝ |x]−∇f(x)∥ =
d

2h
∥E
[(
R(hrζ)−R(−hrζ)

)
ζK(r)

]
∥

≤ d

2h
E
[
|R(hrζ)−R(−hrζ)| |K(r)|

]
≤ κβLdh

β−1.

Proof of Lemma 2.2.4. We have

∥ĝ∥2 = d2

4h2
∥∥(f(x+ hrζ)− f(x− hrζ) + ξ − ξ′

)
ζK(r)

∥∥2
=

d2

4h2
(
f(x+ hrζ)− f(x− hrζ) + ξ − ξ′

)2
K2(r).

Using the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) we get

E[∥ĝ∥2 |x] ≤ 3d2

4h2

(
E
[(
f(x+ hrζ)− f(x− hrζ)

)2
K2(r)

]
+ 2κσ2

)
. (2.12)

53



Here,

(
f(x+ hrζ)− f(x− hrζ)

)2
=
(
f(x+ hrζ)− f(x− hrζ)± f(x)± 2⟨∇f(x), hrζ⟩

)2
≤ 3

{(
f(x+ hrζ)−f(x)− ⟨∇f(x), hrζ⟩

)2
+
(
f(x− hrζ)− f(x)− ⟨∇f(x),−hrζ⟩

)2
+ 4⟨∇f(x), hrζ⟩2

}
≤ 3

(
L̄2

2
∥hrζ∥4 + 4⟨∇f(x), hrζ⟩2

)
, (2.13)

where the last inequality follows from standard properties of convex functions with Lipschitz

continuous gradient, see e.g., (Bubeck, 2015, Lemma 3.4). Taking the expectation and using

the fact that E[ζζ⊤] = (1/d)Id×d we obtain

E[(f(x+ hrζ)− f(x− hrζ))2K2(r)] ≤ 3κ

(
L̄2h4

2
+

4h2

d
∥∇f(x)∥2

)
. (2.14)

To prove part (i) of the lemma, it is enough to combine (2.12), (2.14) and the inequality

∥∇f(x)∥ ≤ L̄∥x − x∗∥ that follows from the Lipschitz gradient assumption and the fact that

∇f(x∗) = 0. Next, under the assumptions of part (ii) of the lemma we get analogously to

(2.13) that (
f(x+ hrζ)− f(x− hrζ)

)2 ≤ 3
(
2L2∥hrζ∥4 + 4⟨∇f(x), hrζ⟩2

)
.

This yields inequality (2.14) with the only difference that L̄2/2 is replaced by 2L2. Together

with (2.12), it implies the result.

Lemma 2.8.1. Let f be Lipschitz continuous with constantG > 0 in a Euclidean ht-neighborhood

of the set Θ, and let Assumption 2.2.1 (i) hold. Let ĝt and xt be defined by Algorithm 1. Then

E[∥ĝt∥2 |xt] ≤ κ
(
C∗G2d+

3d2

2h2t
σ2
)
,

where C∗ > 0 is a numerical constant and κ =
∫
K2(u)du.

Proof. We have

∥ĝ∥2 = d2

4h2
∥(f(x+ hrζ)− f(x− hrζ) + ξ − ξ′)ζK(r)∥2

=
d2

4h2
(f(x+ hrζ)− f(x− hrζ) + ξ − ξ′)2K2(r).

Using the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) we get

E[∥ĝ∥2 |x] ≤ 3d2

4h2
(
E[(f(x+ hrζ)− f(x− hrζ))2K2(r)] + 2κσ2

)
.

The lemma now follows by using (Shamir, 2017, Lemma 10), which shows by a concentration
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argument that if x ∈ Θ, r ∈ [−1, 1] are fixed, ζ is uniformly distributed on the unit sphere and f

is Lipschitz continuous with constant G > 0 in a Euclidean h-neighborhood of the set Θ, then

E[(f(x+ hrζ)− f(x− hrζ))2] ≤ c
(hr)2G2

d
,

where c > 0 is a numerical constant.

Lemma 2.8.2. Let f(·) be a convex function on Rd and ht > 0. Then the following holds.

(i) Function f̂t(·) is convex on Rd.

(ii) f̂t(x) ≥ f(x) for all x ∈ Rd.

(iii) Function f̂t(·) is differentiable on Rd and for the conditional expectation given xt we have

E[ĝt|xt] = ∇f̂t(xt).

Proof. Item (i) is straightforward. To prove item (ii), consider gt ∈ ∂f(x). Then,

f̂t(x) ≥ E
[
f(x) + ht⟨gt, ζ̃⟩

]
= f(x) + ht⟨gt,E[ζ̃]⟩ = f(x).

For item (iii) we refer to (Nemirovsky and Yudin, 1983, pg. 350), or Flaxman et al. (2005). It is

based on the fact that for any x ∈ Rd using Stokes formula we have

∇f̂t(x) =
1

V (Bd)h
d
t

∫
∥v∥=ht

f(x+ v)
v

∥v∥
dsht(v) =

d

V (Sd)ht

∫
∥u∥=1

f(x+ htu)u ds1(u)

=
d

V (Sd)ht

∫
∥u∥=1

f(x+ htu)uds1(u) = E
[ d
ht
f(x+ htζt)ζt

]
where V (Bd) is the volume of the unit ball Bd, dsr(·) is the element of spherical surface of

raduis r in Rd, and V (Sd) = dV (Bd) is the surface area of the unit sphere in Rd. Since

f(x+ htζt)ζt has the same distribution as f(x− htζt)(−ζt) we also get

E
[d(f(x+ htζt)− f(x− htζt)

)
ζt

2ht

]
= ∇f̂t(x).

Lemma 2.8.3. If f is α-strongly convex then f̂t is α-strongly convex. If f ∈ F2(L) then for any

x ∈ Rd and ht > 0 we have

|f̂t(x)− f(x)| ≤ Lh2t . (2.15)

and

|Ef(x± htζt)− f(x)| ≤ Lh2t . (2.16)
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Proof. Using the fact that E[ζ̃] = 0 we have

|E
[
f(x+ htζ̃)− f(x)

]
| = |E

[
f(x+ htζ̃)− f(x)− ⟨∇f(x), htζ̃⟩

]
| ≤ Lh2tE[∥ζ̃∥2] ≤ Lh2t .

Thus, (2.15) follows. The proof of (2.16) is analogous. The α-strong convexity of f̂t is equiva-

lent to the relation

⟨∇f̂t(x)−∇f̂t(x′), x− x′⟩ ≥ α
∥∥x− x′

∥∥2 , ∀x, x′ ∈ Rd,

which is proved as follows:

⟨∇f̂t(x)−∇f̂t(x′), x− x′⟩ = ⟨E
[
∇f(x+ htζ̃)−∇f(x′ + htζ̃)

]
, x− x′⟩

= E
[
⟨∇f(x+ htζ̃)−∇f(x′ + htζ̃), (x+ htζ̃)− (x′ + htζ̃)⟩

]
≥ α

∥∥x− x′
∥∥2 , ∀x, x′ ∈ Rd,

due to the α-strong convexity of f .

Proofs

Proof of Theorem 2.3.1. Fix an arbitrary x ∈ Θ. By the definition of the algorithm, we have

∥xt+1 − x∥2 ≤ ∥xt − ηtĝt − x∥2, which is equivalent to

⟨ĝt, xt − x⟩ ≤ ∥xt − x∥2 − ∥xt+1 − x]∥2

2ηt
+
ηt
2
∥ĝt∥2. (2.17)

By the strong convexity assumption we have

f(xt)− f(x) ≤ ⟨∇f(xt), xt − x⟩ − α

2
∥xt − x∥2.

Combining the last two displays and setting at = ∥xt − x∥2 we obtain

E[f(xt)− f(x)|xt] ≤ ∥E[ĝt |xt]−∇f(xt)∥∥xt − x∥+ 1

2ηt
E[at − at+1 |xt]

+
ηt
2
E[∥ĝt∥2 |xt]−

α

2
E[at |xt]

≤ κβLdh
β−1
t ∥xt − x∥+ 1

2ηt
E[at − at+1 |xt]

+
ηt
2
E[∥ĝt∥2 |xt]−

α

2
E[at |xt], (2.18)

where the second inequality follows from Lemma 2.2.3. As 2ab ≤ a2 + b2 we have

dhβ−1
t ∥xt − x∥ ≤ 1

2

(2κβL
α

d2h
2(β−1)
t +

α

2κβL
∥xt − x∥2

)
. (2.19)
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We conclude, taking the expectations and letting rt = E[at], that

E[f(xt)− f(x)] ≤ rt − rt+1

2ηt
− α

4
rt + (κβL)

2d
2

α
h
2(β−1)
t +

ηt
2
E[∥ĝt∥2]

Summing both sides over t gives

T∑
t=1

E[f(xt)− f(x)] ≤ 1

2

T∑
t=1

(
rt − rt+1

ηt
− α

2
rt

)
+

T∑
t=1

(
(κβL)

2d
2

α
h
2(β−1)
t +

ηt
2
E[∥ĝt∥2]

)
.

The first sum on the r.h.s. is smaller than 0 for our choice of ηt = 2
αt . Indeed,

T∑
t=1

(
rt − rt+1

ηt
− α

2
rt

)
≤ r1

( 1

η1
− α

2

)
+

T∑
t=2

rt

(
1

ηt
− 1

ηt−1
− α

2

)
= 0.

From this remark and Lemma 2.2.4(ii) (where we use that Assumption 2.2.2 implies f ∈
F2(L̄/2)) we obtain

T∑
t=1

E[f(xt)− f(x)] ≤ 1

α

T∑
t=1

(
(κβL)

2d2h
2(β−1)
t +

1

t
E[∥ĝt∥2]

)

≤ 1

α

T∑
t=1

(
(κβL)

2d2h
2(β−1)
t +

1

t

[
9κ
(
G2d+

L̄2d2h2t
8

)
+

3κd2σ2

2h2t

])

≤ d2

α

T∑
t=1

[{
(κβL)

2h
2(β−1)
t +

3

2

κσ2

h2t t

}
+

9κL̄2h2t
8t

]
+

9κG2

α
d(log T + 1). (2.20)

If σ > 0 then our choice of ht =
(

3κσ2

2(β−1)(κβL)2

) 1
2β
t
− 1

2β is the minimizer of the main term (in curly

brackets in (2.20)). Plugging this ht in (2.20) and using the fact that
∑T

t=1 t
−1+1/β ≤ βT 1/β for

β ≥ 2 we get (2.2). Inequality (2.3) follows from (2.2) in view of the convexity of f . If σ = 0 the

stochastic variability term in (2.20) disappears and one can choose ht as small as desired, in

particular, such that the sum in (2.20) is smaller than κG2

α d log T . This yields the bounds for

σ = 0.

Proof of Theorem 2.4.1. We have

E|M̂ − f(x∗)| ≤ E
∣∣∣ 1
T

T∑
t=1

ξ′′t

∣∣∣+ E
∣∣∣ 1
T

T∑
t=1

(f(xt)− f(x∗))
∣∣∣

= E
∣∣∣ 1
T

T∑
t=1

ξ′′t

∣∣∣+ 1

T

T∑
t=1

E[f(xt)− f(x∗)]

≤ σ

T
1
2

+
1

T

T∑
t=1

E[f(xt)− f(x∗)]

and the theorem follows by using (2.2).
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Proof of Theorem 2.3.2. We start as in the proof of Theorem 2.3.1 to get (2.18). Then, using

the strong convexity of f and the fact that x∗ is the minimizer of f we get analogously to (2.19)

that

dhβ−1
t ∥xt − x∗∥ ≤ 1

2

(2κβL
α

d2h
2(β−1)
t +

α

2κβL
∥xt − x∗∥2

)
≤
κβL

α
d2h

2(β−1)
t +

f(xt)− f(x∗)

2κβL
.

Combining the last display and (2.18), using Lemma 2.2.4 and letting rt = E[∥xt − x∗∥2] we

get

E[f(xt)− f(x∗)] ≤ rt − rt+1

ηt
− αrt + 2(κβL)

2d
2

α
h
2(β−1)
t + κηt

[
9L̄2

(
drt+

d2h2t
8

)
+

3d2σ2

2h2t

]
.

(2.21)

For t = 1, . . . , T0, since ht = T
− 1

2β and ηt = (αT )−1 we have the following consequence of

(2.21)

rt+1 ≤ rt

(
1− 1

T
+

9κL̄2

(αT )2
d

)
+ bT ≤ rt

(
1 +

9κL̄2

(αT )2
d

)
+ bT (2.22)

where

bT =
d2

α2T

(
2(κβL)

2T
−β−1

β +
9

8
κL̄2T

−β+1
β +

3

2
κσ2T

−β−1
β

)
≤

≤ d2

α2T

(
2(κβL)

2 +
9

8
κL̄2 +

3

2
κσ2

)
T
−β−1

β . (2.23)

Letting C3 = 9κL̄2, inequality (2.22) is of the form rt+1 ≤ rtq + bT , with q = (1 + C3d
(αT )2

). Then

rT0+1 ≤ r1q
T0 + bT

T0−1∑
j=1

qj ≤ r1q
T0 + bT

qT0

q − 1
≤
(
r1 +

(αT )2

C3d
bT

)
qT0 .

Now, assuming

T0 =

⌊
4C3d

α2

⌋
(2.24)

we obtain

qT0 = exp

[
T0 log

(
1+

C3d

(αT )2

)]
≤ exp

[
4C3d

α2
log

(
1+

C3d

(αT )2

)]
≤ exp

(
4C2

3d
2

α4T 2

)
≤ exp

(
4C2

3

C2
∗

)
=: C4

where in the last inequality we have used the assumption that, for C∗ > 0 large enough,

α >

√
C∗d

T
. (2.25)
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As we shall see, this also guarantees that T0 < T . In conclusion, we obtain

rT0+1 ≤ C4

(
r1 +

(αT )2

C3d
bT

)
≤ C4

(
r1 +

(αT )2

C3d

d2

α2T

(
2(κβL)

2 +
9

8
κL̄2 +

3

2
κσ2

)
T
−β−1

β

)
= C4

(
r1 +

d

C3

(
2(κβL)

2 +
9

8
κL̄2 +

3

2
κσ2

)
T

1
β

)
. (2.26)

We now go back to inequality (2.21). Recalling the definition of x̄T0,T and the fact that ht = t
− 1

2β

and ηt = 2
αt for t ∈ {T0 + 1, . . . T}, we deduce from (2.21) that

(T − T0)E[f(x̄T0,T )− f(x∗)] ≤
T∑

t=T0+1

(rt − rt+1)
αt

2
− αrt + 18κ

L̄2

αt
drt

+
d2

α

T∑
t=T0+1

(
2(κβL)

2t
−β−1

β +
9

4
κL̄2t

−β+1
β + 3κσ2t

−β−1
β

)
.

Since 9κL̄2 = C3 condition (2.24) implies that 18κL̄2

αt d ≤ α
2 for t ≥ T0 + 1. Thus

(T − T0)E[f(x̄T0,T )− f(x∗)] ≤ α

2

T∑
t=T0+1

[
(rt − rt+1)t− rt

]
+ UT ,

where

UT =
d2

α

(
2(κβL)

2 +
9

4
κL̄2 + 3κσ2

) T∑
t=T0

t
−β−1

β ≤ d2

α

(
2(κβL)

2 +
9

4
κL̄2 + 3κσ2

)
βT

1
β .

On the other hand

T∑
t=T0+1

[
(rt − rt+1)t− rt

]
≤ rT0+1(T0 + 1− 1) +

T∑
t=T0+2

rt(t− (t− 1)− 1) = T0rT0+1.

Using inequality (2.26) and condition (2.24) we get

αT0
2
rT0+1 ≤ 2C3C4d

α

(
r1 +

d

C3

(
2(κβL)

2 +
9

8
κL̄2 +

3

2
κσ2

)
T

1
β

)
= 2C4

(
9κL̄2 d

α
r1 +

d2

α

(
2(κβL)

2 +
9

8
κL̄2 +

3

2
κσ2

)
T

1
β

)
.

These bounds imply

(T − T0)E[f(x̄T0,T )− f(x∗)] ≤ 18C4κL̄
2 d

α
r1 + (2C4 + β)

d2

α

(
2(κβL)

2 +
9

4
κL̄2 + 3κσ2

)
T

1
β .
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Since C∗ > 8C3 = 72κL̄2 it follows from (2.24) and (2.25) that T ≥ 2T0. Thus

E[f(x̄T0,T )− f(x∗)] ≤ 36C4κL̄
2 d

αT
r1 +

(
4C4 + 2β

)d2
α

(
2(κβL)

2 +
9

4
κL̄2 + 3κσ2

)
T
−β−1

β .

Proof of Theorem 2.5.1. Fix x ∈ Θ. Due to the α-strong convexity of f̂t (cf. Lemma 2.8.3) we

have

f̂t(xt)− f̂t(x) ≤ ⟨∇f̂t(xt), xt − x⟩ − α

2
∥xt − x∥2 .

Using (2.15) and Lemma 2.8.2(ii) we obtain

f(xt)− f(x) ≤ Lh2t + ⟨∇f̂t(xt), xt − x⟩ − α

2
∥xt − x∥2 .

Using this property and exploiting inequality (2.17) we find, with an argument similar to the

proof of Theorem 2.3.1, that

∀x ∈ Θ : E
[
f(xt)− f(x)

]
≤ Lh2t +

rt − rt+1

2ηt
− α

2
rt +

ηt
2
E[∥ĝt∥2].

By assumption, ηt = 1
αt . Summing up from t = 1 to T and reasoning again analogously to the

proof of Theorem 2.3.1 we obtain

∀x ∈ Θ : E
T∑
t=1

(
f(xt)− f(x)

)
≤

T∑
t=1

(
Lh2t +

1

2αt
E[∥ĝt∥2]

)
.

Now, inspection of the proof of Lemma 2.2.4 shows that it remains valid with κ = 1 when

K(·) ≡ 1 in Algorithm 1. This yields

E[∥ĝt∥2] ≤ 9

(
G2d+

L2d2h2t
2

)
+

3d2σ2

2h2t
.

Thus,

∀x ∈ Θ : E
T∑
t=1

(
f(xt)− f(x)

)
≤

T∑
t=1

[(
L+

9L2d2

4αt

)
h2t +

3d2σ2

4h2tαt
+

9G2d

2αt

]
.
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The chosen value ht =
(

3d2σ2

4Lαt+9L2d2

)1/4
minimizes the r.h.s. and yields

∀x ∈ Θ : E
T∑
t=1

(
f(xt)− f(x)

)
≤ 3

2

T∑
t=1

d2σ2

αt

(
4Lαt+ 9L2d2

3d2σ2

)1/2

+
9G2

2

d

α
(1 + log T )

≤
T∑
t=1

√
3
[dσ√L√

αt
+

3Ld2σ

2αt

]
+ 9G2 d

α
(1 + log T )

≤ 2
√
3Lσ

d√
α

√
T +

(3√3

2
σL+

9G2

d

)d2
α
(1 + log T ).

As 1+ log T ≤ ((log 2)−1+1) log T for any T ≥ 2, we obtain (2.7). On the other hand, we have

the straightforward bound

∀x ∈ Θ : E
T∑
t=1

(
f(xt)− f(x)

)
≤ GBT. (2.27)

The remaining part of the proof follows the same lines as in Theorem 2.3.1.

Proof of Theorem 2.6.1. We use the fact that supf∈F ′
α,β

is bigger than the maximum over a

finite family of functions in F ′
α,β. We choose this finite family in a way that its members cannot

be distinguished from each other with positive probability but are separated enough from each

other to guarantee that the maximal optimization error for this family is of the order of the

desired lower bound.

We first assume that α ≥ T−1/2+1/β.

Let η0 : R → R be an infinitely many times differentiable function such that

η0(x) =


= 1 if |x| ≤ 1/4,

∈ (0, 1) if 1/4 < |x| < 1,

= 0 if |x| ≥ 1.

Set η(x) =
∫ x
−∞ η0(τ)dτ . Let Ω =

{
− 1, 1

}d be the set of binary sequences of length d.

Consider the finite set of functions fω : Rd → R, ω ∈ Ω, defined as follows:

fω(u) = α(1 + δ) ∥u∥2 /2 +
d∑

i=1

ωirh
βη(uih

−1), u = (u1, . . . , ud),

where ωi ∈ {−1, 1}, h = min
(
(α2/d)

1
2(β−1) , T

− 1
2β
)

and r > 0, δ > 0 are fixed numbers that will

be chosen small enough.

Let us prove that fω ∈ F ′
α,β for r > 0 and δ > 0 small enough. It is straightforward to check

that if r is small enough the functions fω are α-strongly convex and belong to Fβ(L).
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Next, the components of the gradient ∇fω have the form

(∇fω(u))i = α(1 + δ)ui + ωirh
β−1η0(uih

−1).

Thus,

∥∇fω(u)∥2 ≤ 2α2(1 + δ)2 ∥u∥2 + 2r2α2

and the last expression can be rendered smaller than G2 uniformly in u ∈ Θ by the choice of

δ and r small enough since G2 > 4α2.

Finally, we check that the minimizers of functions fω belong to Θ. Notice that we can

choose r small enough to have α−1(1 + δ)−1rhβ−2 < 1/4 and that under this condition the

equation ∇fω(x) = 0 has the solution

x∗ω = (x∗(ω1), . . . , x
∗(ωd)),

where x∗(ωi) = −ωiα
−1(1 + δ)−1rhβ−1. Using the definition of h we obtain

∥x∗ω∥ ≤ d1/2α−1(1 + δ)−1rhβ−1 ≤ d1/2α−1(1 + δ)−1r(α2/d)1/2 ≤ (1 + δ)−1r < 1

for r > 0 small enough, which means that x∗ω belongs to the interior of Θ.

Combining all the above remarks we conclude that the family of functions {fω, ω ∈ Ω} is a

subset of F ′
α,β for r > 0 and δ > 0 small enough.

Set for brevity (zi, yi)
t
i=1 = (z1, y1, . . . , zt, yt), (ζi)ti=1 = (ζ1, . . . , ζt). For any fixed ω ∈ Ω, we

denote by Pω,T the probability measure corresponding to the joint distribution of ((zi, yi)Ti=1, (ζi)
T
i=1)

where yt = fω(zt) + ξt with independent identically distributed ξt’s such that (2.9) holds, ξt is

independent of (z1, y1, . . . , zt−1, yt−1, ζt) for each t, and zt’s chosen by a sequential strategy in

ΠT . We have

dPω,T ((zi, yi)
T
i=1, (ζi)

T
i=1) = dF

(
y1 − fω(z1)

) T∏
t=2

dF
(
yt − fω

(
Φt((zi, yi)

t−1
i=1, ζt

))
dPt(ζt),

where Pt is the probability measure corresponding to the distribution of ζt. Without loss of

generality, we omit here the dependence of Φi on z2, . . . , zi−1 since zi, i ≥ 2, is a Borel function

of z1, y1, . . . , yi−1. Let Eω,T denote the expectation w.r.t. Pω,T .

Consider the statistic

ω̂ ∈ argmin
ω∈Ω

∥zT − x∗ω∥ .

Since ∥x∗ω̂ − x∗ω∥ ≤ ∥zT − x∗ω∥+ ∥zT − x∗ω̂∥ ≤ 2 ∥zT − x∗ω∥ for all ω ∈ Ω we obtain

Eω,T

[
∥zT − x∗ω∥

2 ] ≥ 1

4
Eω,T

[
∥x∗ω − x∗ω̂∥

2 ]
= α−2r2h2β−2Eω,Tρ(ω̂, ω),
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where ρ(ω̂, ω) =
∑d

i=1 I(ω̂i ̸= ωi) is the Hamming distance between ω̂ and ω. Taking the

maximum over Ω and then the minimum over all statistics ω̂ with values in Ω we obtain

max
ω∈Ω

Eω,T

[
∥zT − x∗ω∥

2 ] ≥ α−2r2h2β−2 inf
ω̂

max
ω∈Ω

Eωρ(ω̂, ω).

By (Tsybakov, 2009, Theorem 2.12), if for some γ > 0 and all ω, ω′ ∈ Ω such that ρ(ω, ω′) = 1

we have KL(Pω,T ,Pω′,T ) ≤ γ, where KL(·, ·) denotes the Kullback-Leibler divergence, then

inf
ω̂

max
ω∈Ω

Eω,Tρ(ω̂, ω) ≥
d

4
exp(−γ).

Now for all ω, ω′ ∈ Ω such that ρ(ω, ω′) = 1 we have

KL(Pω,T ,Pω′,T ) =

∫
log
( dPω,T

dPω′,T

)
dPω,T

=

∫ [
log
( dF (y1 − fω(z1))

dF (y1 − fω′(z1))

)
+

+

T∑
t=2

log

(
dF (yt − fω

(
Φt((zi, yi)

t−1
i=1, ζt)

)
)

dF (yt − fω′
(
Φt((zi, yi)

t−1
i=1, ζt)

)
)

)]

dF
(
y1 − fω(z1)

) T∏
t=2

dF
(
yt − fω

(
Φt((zi, yi)

t−1
i=1, ζt)

))
dPt(ζt)

≤ TI0max
u∈R

|fω(u)− fω′(u)|2 = I0r
2η2(1),

where the last inequality is granted if r < v0/η(1) due to (2.9). Assuming in addition that r

satisfies r2 ≤ (log 2)/
(
I0η

2(1)
)

we obtain KL(Pω,T ,Pω′,T ) ≤ log 2. Therefore, we have proved

that if α ≥ T−1/2+1/β then there exist r > 0 and δ > 0 small enough such that

max
ω∈Ω

Eω,T

[
∥zT − x∗ω∥

2 ] ≥ 1

8
dα−2r2h2β−2 =

r2

8
min

(
1,

d

α2
T
−β−1

β

)
. (2.28)

This implies (2.11) for α ≥ T−1/2+1/β. In particular, if α = α0 := T−1/2+1/β the bound (2.28) is

of the order min
(
1, dT

− 1
β

)
. Then for 0 < α < α0 we also have the bound of this order since

the classes F ′
α,β are nested: F ′

α0,β
⊂ F ′

α,β. This completes the proof of (2.11).

We now prove (2.10). From (2.28) and α-strong convexity of f we get that, for α ≥
T−1/2+1/β,

max
ω∈Ω

Eω,T

[
f(zT )− f(x∗ω)

]
≥ r2

16
min

(
α,

d

α
T
−β−1

β

)
.

This implies (2.10) in the zone α ≥ T−1/2+1/β since for such α we have

min
(
α,

d

α
T
−β−1

β

)
= min

(
max(α, T−1/2+1/β),

d√
T
,
d

α
T
−β−1

β

)
.
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On the other hand,

min
(
α0,

d

α0
T
−β−1

β

)
= min

(
T−1/2+1/β,

d√
T

)
,

and the same lower bound holds for 0 < α < α0 by the nestedness argument that we used to

prove (2.11) in the zone 0 < α < α0. Thus, (2.10) follows.

Comments on Bach and Perchet (2016)

In this section we comment on issues with some claims in the paper of Bach and Perchet Bach

and Perchet (2016), which presents a number of valuable results and provides a motivation

for our work. We wish to clarify such issues for the sake of understanding, as otherwise a

comparison to the results presented here would be misleading.

Bach and Perchet Bach and Perchet (2016) introduce Algorithm 1 in the current form and

provide upper bounds for its optimisation error and online regret when f ∈ Fβ(L) with integer

β. The setting where f is strongly convex is considered in Propositions 4,6-8 and 9 of that

paper. Propositions 4, 6,9 give the rates decaying in T not faster than T−β−1
β+1 , which is slower

than the optimal rate T
−β−1

β . Proposition 8 dealing with asymptotic results is problematic. It

is stated as bounds on ∥xN − x∗∥ but the authors presumably mean bounds on E ∥xN − x∗∥2.
A dependence of the bound on the initial value of the algorithm is missing in the part of

Proposition 8 entitled "unconstrained optimization of strongly convex mappings". This remark

also concerns Proposition 7.

Additional results

In this section, we provide refined versions of Theorems 2.3.1 and 2.5.1. First we state a

non-asymptotic version of Chung’s lemma (Chung, 1954, Lemma 1). It allows us to obtain

in Theorem 2.8.5 upper bounds for E{∥xt − x∗∥2}, where xt is generated by a constrained

version of Algorithm 1 (i.e., with compact Θ) under the assumptions of Theorems 2.3.1 and

2.5.1. By using this result and considering averaging from ⌊T/2⌋+1 to T rather than from 1 to

T , in Theorems 2.8.6 and 2.8.7 we provide finer upper bounds for the optimization error than in

Theorems 2.3.1 and 2.5.1. The refinement consists in the fact that we get rid of the logarithmic

factors appearing in (2.3) and (2.8). Finally, in Theorem 2.8.8 we show that the term d2

α log T

in the bound on the cumulative regret in Theorem 2.5.1 can be improved to d
α log T under a

slightly more restrictive assumption (we assume that the norm ∥∇f∥ is uniformly bounded by

G on a large enough Euclidean neighborhood of Θ rather than only on Θ).

Lemma 2.8.4. Let {bt} be a sequence of real numbers such that for all integers t ≥ 2,

bt+1 <

(
1− 1

t

)
bt +

N∑
i=1

ai
tpi+1

, (2.29)
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where 0 < pi < 1 and ai ≥ 0 for 1 ≤ i ≤ N . Then for t ≥ 2 we have

bt <
2b2
t

+
N∑
i=1

ai
(1− pi)tpi

. (2.30)

Proof. For any fixed t > 0 the convexity of the mapping u 7→ g(u) = (t + u)−p implies that

g(1)− g(0) ≥ g′(0), i.e.,

1

tp
− 1

(t+ 1)p
≤ p

tp+1
.

Thus,

ai
tp+1

≤ ai
1− p

(
1

(t+ 1)p
−
(
1− 1

t

) 1

tp

)
. (2.31)

Using (2.29), and (2.31) and rearranging terms we get

bt+1 −
N∑
i=1

ai
(1− pi)(t+ 1)pi

≤
(
1− 1

t

)[
bt −

N∑
i=1

ai
(1− pi)tpi

]
.

Letting τt = bt −
∑N

i=1
ai

(1−pi)tpi
we have τt+1 ≤ (1 − 1

t )τt. Now, if τ2 ≤ 0 then τt ≤ 0 for any

t ≥ 2 and thus (2.30) holds. Otherwise, if τ2 > 0 then for t ≥ 3 we have

τt ≤ τ2

t−1∏
i=2

(
1− 1

i

)
≤ 2τ2

t
≤ 2b2

t
,

where we have used the inequalities
∑t−1

i=2 log
(
1− 1

i

)
≤ −

∑t−1
i=2

1
i ≤ − log(t− 1) ≤ log(2/t).

Thus, (2.30) holds in this case as well.

Theorem 2.8.5. Let f ∈ Fα,β(L) with β ≥ 2, α,L > 0, σ > 0, and let Assumption 2.2.1

hold. Consider Algorithm 1 where Θ is a convex compact subset of Rd and assume that

maxx∈Θ ∥∇f(x)∥ ≤ G.

(i) If Assumption 2.2.2 holds, ht =
(

3κσ2

2(β−1)(κβL)2

) 1
2β
t
− 1

2β and ηt = 2
αt then for t ≥ 1 we

have

E
[
∥xt − x∗∥2

]
<

2G2

α2t
+A5

d2

α2
t
−β−1

β (2.32)

where x∗ = argminx∈Θ f(x) and A5 > 0 is a constant that does not depend on d, α, t.

(ii) If β = 2, ht =
(

3d2σ2

4Lαt+9L2d2

)1/4
and ηt = 1

αt then for t ≥ 1 we have that

E
[
∥xt − x∗∥2

]
<

2G2

α2t
+A6

d

α
3
2 t

1
2

+A7
d2

α2t
, (2.33)

where A6, A7 > 0 are constants that do not depend on d, α, t.

Proof. Let rt = E ∥xt − x∗∥2. To prove the theorem, we will show that under the assumptions
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of the theorem {rt} satisfies (2.29) with suitable ai and pi, and then use Lemma 2.8.4.

We start by noticing that, in view of the α-strong convexity of f and the fact that f is

Lipschitz continuous with constant G in Θ for any t ≥ 1 we have

∥xt − x∗∥2 ≤ G2

α2
. (2.34)

Thus, (2.32) and (2.33) hold for t = 1 and it suffices to prove the theorem for t ≥ 2. The

definition of Algorithm 1 gives that, for t ≥ 1,

∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2 − 2ηt⟨ĝt, xt − x∗⟩+ η2t ∥ĝt∥
2 .

Taking conditional expectation of both sides of this inequality given xt we obtain

E[∥xt+1 − x∗∥2 |xt] ≤ ∥xt − x∗∥2 − 2ηt⟨E[ĝt|xt], xt − x∗⟩+ η2tE[∥ĝt∥
2 |xt].

Using this inequality and Lemmas 2.2.3 and 2.2.4(ii) we find

E[∥xt+1 − x∗∥2 |xt] ≤ ∥xt − x∗∥2 − 2ηtα ∥xt − x∗∥2 + 2ηtκβLdh
β−1
t ∥xt − x∗∥+

+η2t

[(
9κ

(
G2d+

L2d2h2t
2

)
+

3κd2σ2

2h2t

)]
. (2.35)

On the other hand, for λ > 0, we have

dhβ−1
t ∥xt − x∗∥ ≤ 1

2

(
κβL

αλ
d2h

2(β−1)
t +

αλ

κβL
∥xt − x∗∥2

)
. (2.36)

Combining (2.36) and (2.35) we get

E[∥xt+1 − x∗∥2 |xt] ≤ (1− (2− λ)ηtα) ∥xt − x∗∥2 + (κβL)
2

αλ ηtd
2h

2(β−1)
t +

+η2t

[(
9κ
(
G2d+

L2d2h2
t

2

)
+ 3κd2σ2

2h2
t

)]
.

(2.37)

Substituting ht =
(

3κσ2

2(β−1)(κβL)2

) 1
2β
t
− 1

2β , ηt = 2
αt , λ = 3

2 in (2.37), and taking the expecta-

tion over xt we obtain

rt+1 ≤
(
1− 1

t

)
rt +

4(κβL)
2

3α2
d2
(

3κσ2

2(β − 1)(κβL)2

)β−1
β

t
− 2β−1

β +

+
18κL2d2

α2

(
3κσ2

2(β − 1)(κβL)2

) 1
β

t
− 2β+1

β +
36κ

α2t2
G2d+

+
6κd2σ2

α2

(
3κσ2

2(β − 1)(κβL)2

)− 1
β

t
− 2β−1

β .
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Thus, we have

rt+1 <
(
1− 1

t

)
rt + C

d2

α2
t
− 2β−1

β ,

where

C =
4(κβL)

2

3

(
3κσ2

2(β − 1)(κβL)2

)β−1
β

+ 18κL2

(
3κσ2

2(β − 1)(κβL)2

) 1
β

+

+
36κ

d
G2 + 6κσ2

(
3κσ2

2(β − 1)(κβL)2

)− 1
β

.

This is a particular instance of (2.29). Therefore, we can apply Lemma 2.8.4, which yields

that, for all t ≥ 2,

rt <
2G2

α2t
+ βC

d2

α2
t
−β−1

β .

Thus, (2.32) follows.

We now prove (2.33). Since β = 2, using Lemmas 2.2.3, 2.2.4(ii), and 2.8.3 we obtain

E[∥xt+1 − x∗∥2 |xt] ≤ (1− ηtα) ∥xt − x∗∥2 + 2ηtLh
2
t + η2t

[(
9

(
G2d+

L2d2h2t
2

)
+

3d2σ2

2h2t

)]
.

Setting here ht =
(

3d2σ2

4Lαt+9L2d2

)1/4
, ηt = 1

αt , and taking the expectation over xt we get

rt+1 ≤
(
1− 1

t

)
rt +

(
(4Lαt+ 9L2d2)1/2

α2

) √
3dσ

t2
+

9G2d

α2t2

≤
(
1− 1

t

)
rt +A′

6

d

α
3
2 t

3
2

+A′
7

d2

α2t2
,

where A′
6 = 2

√
3Lσ and A′

7 = 3
√
3Lσ + 9G2

d . Applying Lemma 2.8.4 for t ≥ 2 we get

rt <
2G2

α2t
+ 2A′

6

d

α
3
2 t

1
2

+ 2A′
7

d2

α2t
.

Consider the estimator

x̂T =
1

T − ⌊T/2⌋

T∑
t=⌊T/2⌋+1

xt. (2.38)

The following two theorems provide bounds on the optimization error of this estimator.

Theorem 2.8.6. Let f ∈ Fα,β(L) with β ≥ 2, α,L > 0, σ > 0, and let Assumptions 2.2.1 and

2.2.2 hold. Consider Algorithm 1 where Θ is a convex compact subset of Rd and assume that
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maxx∈Θ ∥∇f(x)∥ ≤ G. If ht =
(

3κσ2

2(β−1)(κβL)2

) 1
2β
t
− 1

2β and ηt = 2
αt then the optimization error of

the estimator (2.38) satisfies

E[f(x̂T )− f(x∗)] ≤ min

(
GB,

1

α

(
d2
( A′

1

T
β−1
β

+
A′

2

T

)
+
A′

3d

T

))
,

where x∗ = argminx∈Θ f(x). Here A′
1, A

′
2 and A′

3 are positive constants that do not depend

on d, α, T , and B is the Euclidean diameter of Θ.

Proof. With the same steps as in the proof of Theorem 2.3.1 (see (2.20)) but taking now the

sum over t = ⌊T/2⌋+ 1, . . . , T rather than over t = 1, . . . , T we obtain

T∑
t=⌊T/2⌋+1

E[f(xt)− f(x∗)] ≤ r⌊T/2⌋+1
⌊T/2⌋α

2
+

1

α

T∑
t=⌊T/2⌋+1

(
(κβL)

2d2h
2(β−1)
t +

+
1

t

[
9κ
(
G2d+

L̄2d2h2t
8

)
+

3κd2σ2

2h2t

])
≤ r⌊T/2⌋+1

⌊T/2⌋α
2

+
9κG2d

α

T∑
t=⌊T/2⌋+1

1

t

+
1

α

T∑
t=1

(
(κβL)

2d2h
2(β−1)
t +

L̄2d2h2t
8t

+
3κd2σ2

2h2t t

)
.

For the last sum here, we use exactly the same bound as in the proof of Theorem 2.3.1.

Moreover, it follows from Theorem 2.8.5 that

r⌊T/2⌋+1 <
4G2

α2T
+A′

5

d2

α2
T
−β−1

β ,

where A′
5 = 2(β−1)/βA5. Combining these remarks and using the fact that

∑T
t=⌊T/2⌋+1

1
t ≤

log(T/⌊T/2⌋) ≤ 2 for all T ≥ 2 (recall that we assume T ≥ 2 throughout the paper), as well as

the the convexity of f we get

E[f(x̂T )− f(x∗)] ≤ 1

α

(
d2
( A′

1

T
β−1
β

+
A′

2

T

)
+
A′

3d

T

)
,

where A′
1 = 2A1 +

A′
5
2 , A′

2 = 2c̄L̄2(σ/L)
2
β with constant c̄ as in Theorem 2.3.1 and A′

3 =

2G2(18κ+ 1/d). On the other hand we have the straightforward bound

E[f(x̂T )− f(x∗)] ≤ GB.

Theorem 2.8.7. Let f ∈ Fα,2(L) with α,L > 0, σ > 0, and let Assumption 2.2.1 hold. Consider

the version of Algorithm 1 as in Theorem 2.5.1 where Θ is a convex compact subset of Rd and
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assume that maxx∈Θ ∥∇f(x)∥ ≤ G. If ht =
(

3d2σ2

4Lαt+9L2d2

)1/4
and ηt = 1

αt then the optimization

error of the estimator (2.38) satisfies

E[f(x̂T )− f(x∗)] ≤ min

(
GB,A8

d√
αT

+A9
d2

αT

)
,

where x∗ = argminx∈Θ f(x). Here A8 and A9 are positive constants that do not depend on

d, α, T , and B is the Euclidean diameter of Θ.

Proof. Arguing as in the proof of Theorem 2.5.1 but taking the sum over ⌊T/2⌋ + 1, . . . , T

rather than over 1, . . . , T we obtain

T∑
t=⌊T/2⌋+1

E
[
f(xt)− f(x∗)

]
≤ r⌊T/2⌋+1

⌊T/2⌋α
2

+

T∑
t=⌊T/2⌋+1

[(
L+

9L2d2

4αt

)
h2t +

3d2σ2

4h2tαt
+

9G2d

2αt

]

≤ r⌊T/2⌋+1
⌊T/2⌋α

2
+

T∑
t=⌊T/2⌋+1

[√
3
dσ

√
L√

αt
+

3
√
3Ld2σ

2αt
+

9G2d

2αt

]

≤ r⌊T/2⌋+1
⌊T/2⌋α

2
+ 2

√
3Lσ

d√
α

√
T +

3d

2α
(
√
3Ldσ + 3G2)

T∑
t=⌊T/2⌋+1

1

t

≤ r⌊T/2⌋+1
⌊T/2⌋α

2
+ 2

√
3Lσ

d√
α

√
T +

3d

α
(
√
3Ldσ + 3G2),

where we have used the inequality
∑T

t=⌊T/2⌋+1
1
t ≤ log(T/⌊T/2⌋) ≤ 2 for all T ≥ 2 (recall that

we assume T ≥ 2 throughout the paper). It follows from Theorem 2.8.5, that

r⌊T/2⌋+1 <
4G2

α2T
+
√
2A6

d

α
3
2T

1
2

+ 2A7
d2

α2T
.

Combining the last two displays yields

T∑
t=⌊T/2⌋+1

E
[
f(xt)− f(x∗)

]
≤ G2

α
+A6

d

2
√
2
√
α

√
T +A7

d2

2α
+ 2

√
3Lσ

d√
α

√
T +

3d

α
(
√
3Ldσ + 3G2).

From this inequality, using the fact that f is a convex function, we obtain

E[f(x̂T )− f(x∗)] ≤ A8
d√
αT

+A9
d2

αT
,

where A8 =
A6√
2
+ 4

√
3Lσ and A9 = A7 + 2(3

√
3Lσ + (9d+ 1)G2/d2).

Theorem 2.8.8. Let f ∈ Fα,2(L) with α,L > 0, and let Assumption 2.2.1 hold. Consider the

version of Algorithm 1 as in Theorem 2.5.1 where Θ is a convex compact subset of Rd, and

ht =
(
3d2σ2

4Lαt

) 1
4 , ηt = 1

αt . If f is Lipschitz continuous with Lipschitz constant G on the Euclidean
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h1-neighborhood of Θ, then for σ > 0 we have the following bound for the cumulative regret:

∀x ∈ Θ :
T∑
t=1

E[f(xt)− f(x)] ≤ min

(
GBT, 2

√
3Lσ

d√
α

√
T +

C∗G2

2

d

α
(1 + log T )

)
, (2.39)

where B is the Euclidean diameter of Θ.

If σ = 0, then the cumulative regret for any ht chosen small enough and ηt = 1
αt satisfies

∀x ∈ Θ :
T∑
t=1

E[f(xt)− f(x)] ≤ min

(
GBT,C∗G2 d

α
(1 + log T )

)

Proof. The argument is analogous to the proof of Theorem 2.5.1. The difference is only in

the bound on E[∥ĝt∥2]. To evaluate this term, we now use Lemma 2.8.1 (noticing that when

K(·) ≡ 1 this lemma is satisfied with κ = 1). This yields

∀x ∈ Θ : E
T∑
t=1

(
f(xt)− f(x)

)
≤

T∑
t=1

[
Lh2t +

1

2αt

(
C∗G2d+

3d2σ2

2h2t

)]
.

The chosen value ht =
(
3d2σ2

4Lαt

) 1
4 minimizes the r.h.s. and together with (2.27) yields (2.39).

The remaining part of the proof follows the same lines as in Theorem 2.3.1.

Lemma 2.8.9. Let ft ∈ Fβ(L) where β ∈ [1, 2] and L > 0. Then for any x ∈ Rd and ht > 0 we

have

|f̂t(x)− ft(x)| ≤ Lhβt , (2.40)

and

|Eft(x± htζt)− ft(x)| ≤ Lhβt . (2.41)

Proof. For β = 1 the proof of (2.40) is obvious since
∥∥∥ζ̃∥∥∥ ≤ 1. For 1 < β ≤ 2 using the fact

that E[ζ̃] = 0 we have

|E
[
ft(x+ htζ̃)− ft(x)

]
| = |E

[
ft(x+ htζ̃)− ft(x)− ⟨∇ft(x), htζ̃⟩

]
| ≤ Lhβt E[

∥∥∥ζ̃∥∥∥β] ≤ Lhβt .

Thus, (2.40) follows. The proof of (2.41) is analogous.
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We study the problem of distributed zero-order optimization for a class of strongly convex func-

tions. They are formed by the average of local objectives, associated to different nodes in a

prescribed network. We propose a distributed zero-order projected gradient descent algorithm

to solve the problem. Exchange of information within the network is permitted only between

neighbouring nodes. An important feature of our procedure is that it can query only function

values, subject to a general noise model, that does not require zero mean or independent

errors. We derive upper bounds for the average cumulative regret and optimization error of

the algorithm which highlight the role played by a network connectivity parameter, the number

of variables, the noise level, the strong convexity parameter, and smoothness properties of

the local objectives. The bounds indicate some key improvements of our method over the

state-of-the-art, both in the distributed and standard zero-order optimization settings. We also

comment on lower bounds and observe that the dependency over certain function parameters

in the bound is nearly optimal.
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3.1 Introduction

We study the problem of distributed optimization where each node (or agent) has an objective

function fi : Rd → R and exchange of information is limited between neighbouring agents

within a prescribed network of connections. The goal is to minimize the average of these

objectives on a closed bounded convex set Θ ⊂ Rd,

min
x∈Θ

f(x) where f(x) =
1

n

n∑
i=1

fi(x). (3.1)

Distributed optimization has been widely studied in the literature, we refer to Boyd et al. (2011);

Duchi et al. (2012); Jakovetić (2019); Jakovetić et al. (2014); Kia et al. (2015); Lobel et al.

(2011); Nedic and Ozdaglar (2009); Nedic et al. (2010); Pu et al. (2021); Scaman et al. (2019);

Shi et al. (2014); Tsitsiklis et al. (1986) and references therein. This problem has broad appli-

cations such as multi-agent target seeking Liu et al. (2017), distributed learning Kraska et al.

(2013), and wireless networks Park et al. (2021), among others.

We address problem (3.1) from the perspective of zero-order distributed optimization. That

is we assume that only function values can be queried by the algorithm, subject to measure-

ment noise. During the optimization procedure, each agent maintains a local copy of the

variables which are sequentially updated based on local and neighboring functions’ queries.

We wish to devise such optimization procedures which are efficient in bounding the average

optimization error and cumulative regret in terms of the functions’ properties and network

topology.

Contributions Our principal contribution is a distributed zero-order optimization algorithm,

introduced in Section 3.2, which we show to achieve tight rates of convergence under certain

assumptions on the objective functions, outlined in Section 3.3. Specifically, we consider that

the local objectives fi are β-Hölder and the average objective f is α-strongly convex. The

algorithm relies on a novel zero-order gradient estimator, presented in Section 3.4. Although

conceptually very simple, this estimator, when employed within our algorithm, allows us to

obtain an O(d2) computational gain as well as improved error rates than previous state-of-

the-art zero-order optimization procedures Akhavan et al. (2020); Bach and Perchet (2016), in

the special case of standard (undistributed) setting. Another key advantage of our approach

is due to the general noise model presented in Section 3.5, under which function values are

queried. The noise variables do not need to be zero mean or independently sampled, and

thus they include “adversarial” noise. In Section 3.6, we derive the rates of convergence for

the cumulative regret and the optimization error of the proposed algorithm, and in Section

3.7 we consider the special case of 2-smooth functions. The rates highlight the dependency

with respect to the number of variables d, the number of function queries T , the spectral gap

of the network matrix 1 − ρ, and the parameters n, α and β. The bounds enjoy a better

dependency on 1 − ρ than previous bounds on zero-order distributed optimization Qu and Li
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(2018); Tang et al. (2019); Yu et al. (2019). We also compare our bounds to related lower

bounds in Akhavan et al. (2020) for undistributed setting, observing that our rates are optimal

either with respect to T and α, or with respect to T and d.

Previous Work We briefly comment on previous related work and defer to Section 3.8 for

a more in depth discussion and comparison. For both deterministic and stochastic scenarios

of problem (3.1), a large body of literature is devoted to first-order gradient based methods with

a consensus scheme (see the papers cited above and references therein). On the other hand,

the study of zero-order methods was started only recently Hajinezhad et al. (2019); Qu and Li

(2018); Sahu et al. (2018a,b); Tang et al. (2019); Yu et al. (2019). The works Qu and Li (2018);

Tang et al. (2019); Yu et al. (2019) are dealing with zero-order distributed methods in noise-free

settings while the noisy setting is developed in Hajinezhad et al. (2019); Sahu et al. (2018a,b).

Namely, Hajinezhad et al. (2019) considers 2-point zero-order methods with stochastic queries

for non-convex optimization but assume that the noise is the same for both queries, which

makes the problem analogous to noise-free scenario in terms of optimization rates. Papers

Sahu et al. (2018a,b) study zero-order distributed optimization for strongly convex and β-

smooth functions fi with β ∈ {2, 3}. They derive bounds on the optimization error, though

without providing closed form expressions.

Notation Throughout we denote by ⟨·, ·⟩ and ∥ · ∥ be the standard inner product and

Euclidean norm on Rd, respectively, and by ∥ · ∥∗ the spectral norm of a matrix. The notation I
is used for the n-dimensional identity matrix and 1 for the vector in Rn with all entries equal to 1.

We denote by ej the j-th canonical basis vector in Rd. For any set A, the number of elements

in A is denoted by |A|. For x ∈ R, the value ⌊x⌋ is the maximal integer less than x. For every

closed convex set Θ ⊂ Rd and x ∈ Rd we denote by ProjΘ(x) = argmin{∥z − x∥ : z ∈ Θ} the

Euclidean projection of x onto Θ. We denote by diam(Θ) the Euclidean diameter of Θ. Finally

we let U [−1, 1] be the uniform distribution on [−1, 1].

3.2 The Problem

Let n be the number of agents and let G = (V,E) be an undirected graph, where V =

{1, . . . , n} is the set of nodes and E ⊆ V × V is the set of edges. The adjacency matrix

of G is the symmetric matrix (Aij)
n
i,j=1 defined as Aij = 1, if (i, j) ∈ E and zero otherwise.

We consider the following sequential learning framework, where each agent i gets values of

function fi corrupted by noise and shares information with other agents. At step t, agent i acts

as follows:

• makes queries and gets noisy values of fi,

• provides a local output ui(t) based on these queries and on the past information,

• broadcasts ui(t) to neighboring agents,
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• updates its local variable using information from other agents as follows:

xi(t+1)=

n∑
j=1

Wiju
j(t),

where W = (Wij)
n
i,j=1 is a given matrix called the consensus matrix.

Below we use the following condition on the consensus matrix.

Assumption 3.2.1. Matrix W is symmetric, doubly stochastic, and ρ :=
∥∥W − n−111⊤

∥∥
∗ < 1.

Matrix W accounts for the connectivity properties of the network. If Wij = 0 the agents

i and j are not connected (do not exchange information). Often W is defined as a doubly

stochastic matrix function of the adjacency matrix A of the graph. One popular example is as

follows:

Wij =


Aij

γmax{d(i),d(j)} if i ̸= j,

1−
∑

k:k ̸=i

Aki
γmax{d(i),d(k)} if i = j,

(3.2)

where d(i) =
∑n

j=1Aij is the degree of node i and γ > 0 is a constant. Then, clearly,

W = (Wij) is a symmetric and doubly stochastic matrix, and Wij = 0 if agents i and j are

not connected. Moreover, we have ρ < 1 − c/n2 for a constant c > 0 (see Olshevsky (2014);

Qu and Li (2018)). Values of spectral gaps ρ for some other W reflecting different network

topologies can be found in Duchi et al. (2012). Typically, ρ < 1 − an, where an = Ω(n−1) or

an = Ω(n−2). Parameter ρ can be viewed as a measure of difference between the distributed

problem and a standard optimization problem. If the graph of communication is a complete

graph a natural choice is W = n−11n1
⊤
n and then ρ = 0. For more examples of consensus

matrices W , see Duchi et al. (2012); Olshevsky and Tsitsiklis (2009) and references therein.

The local outputs ui can be defined in different ways. Our approach is outlined in Algorithm

2. At Step 1, an estimate of the gradient of the local objective fi at xi(t) is constructed. This

involves a randomized procedure that we describe and justify in Section 3.4. The local output

ui is defined as an update of the projected gradient algorithm with such an estimated gradient.

At Step 2 of the algorithm, each agent computes the next point by a local consensus gradient

descent step, which uses local and neighbor information. Step 2 of the algorithm is known as

gossip method, see e.g., Boyd et al. (2006)), which was initially introduced as an approach for

the networks with the imposed connection between the nodes changing by time. We also refer

to Sayin et al. (2017) for similar algorithms in the context of distributed stochastic first-order

gradient methods.
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Algorithm 2 Distributed Zero-Order Gradient

Input Communication matrix (Wij)
n
i,j=1, step sizes (ηt > 0)T0−1

t=1

Initialization Choose initial vectors x1(1) = · · · = xn(1) ∈ Rd

For t = 1, . . . , T0 − 1
For i = 1, . . . , n

1. Build an estimate gi(t) of the gradient ∇fi(xi(t)) using noisy evaluations of fi
2. Update xi(t+1)=

∑n
k=1WikProjΘ(x

k(t)− ηtg
k(t))

End
End
Output Approximate minimizer x̄(T0) = 1

n

∑n
i=1 x

i(T0) of the average objective f =
1
n

∑n
i=1 fi

3.3 Assumptions on Local Objectives

In this section, we give some definitions and introduce our assumptions on the local objective

functions f1, . . . , fn.

Definition 3.3.1. Denote by Fβ(L) the set of all functions f : Rd → R that are ℓ = ⌊β⌋ times

differentiable and satisfy, for all x, z ∈ Rd the Hölder-type condition∣∣∣∣f(z)− ∑
0≤|m|≤ℓ

1

m!
Dmf(x)(z − x)m

∣∣∣∣ ≤ L∥z − x∥β,

where L > 0, the sum is over the multi-index m = (m1, ...,md) ∈ Nd, we used the notation

m! = m1! · · ·md!, |m| = m1 + · · ·+md, and we defined, for every ν = (ν1, . . . , νd) ∈ Rd,

Dmf(x)νm =
∂|m|f(x)

∂m1x1 · · · ∂mdxd
νm1
1 · · · νmd

d .

Elements of the class Fβ(L) are referred to as β-Hölder functions.

Definition 3.3.2. Function f : Rd → R is called 2-smooth if it is differentiable on Rd and there

exists L̄ > 0 such that, for every (x, x′) ∈ Rd × Rd, it holds that

∥∇f(x)−∇f(x′)∥ ≤ L̄∥x− x′∥.

Definition 3.3.3. Let α > 0. Function f : Rd → R is called α-strongly convex if f is differen-

tiable on Rd and

f(x)− f(x′) ≥ ⟨∇f(x′), x− x′⟩+ α

2

∥∥x− x′
∥∥2 , ∀x, x′ ∈ Rd.

Assumption 3.3.4. Functions f1, . . . , fn: (i) belong to the class Fβ(L), for some β ≥ 2, and

(ii) are 2-smooth.

In Section 3.6 we will analyse the convergence properties of Algorithm 2 when the ob-

jective function f in 3.1 is α-strongly convex. We stress that we do not need the functions
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Algorithm 3 Gradient Estimator with 2d Queries

Input Function F : Rd → R and point x ∈ Rd

Requires Kernel K : [−1, 1] → R, parameter h > 0
Initialization Generate random r from uniform distribution on [−1, 1]
For j = 1, . . . , d

1. Obtain noisy values yj = F (x+ hrej) + ξj and y′j = F (x− hrej) + ξ′j
2. Compute gj = 1

2h(yj − y′j)K(r)
End
Output g = (gj)

d
j=1 ∈ Rd estimator of ∇F (x)

f1, . . . , fn, to be as well α-strongly convex. It is enough to make such an assumption on the

compound function f , while the local functions fi only need to satisfy the smoothness condi-

tions stated in Assumption 3.3.4 above.

3.4 Gradient Estimator

In this section, we detail our choice of gradient estimators gi(t) used at Step 1 of Algorithm 2.

We consider Algorithm 3. For any function F : Rd → R and any point x, the vector g returned

by Algorithm 3 is an estimate of ∇F (x) based on noisy observations of F at randomized

points. The estimator is computed for every node i at each step t, thus giving the vectors

g = gi(t) in Algorithm 2. The gradient estimator crucially requires a kernel function K :

[−1, 1] → R that allows us to take advantage of possible higher order smoothness properties

of f . Specifically, in what follows we assume that∫
uK(u)du = 1,

∫
ujK(u)du = 0, j = 0, 2, 3, . . . , ℓ, and κβ ≡

∫
|u|β|K(u)|du <∞, (3.3)

for given β ≥ 2 and ℓ = ⌊β⌋. In Polyak and Tsybakov (1990) such kernels can be constructed

as weighted sums of Legendre polynomials, in which case κβ ≤ 2
√
2β with β ≥ 1; see also

Appendix A.3 in Bach and Perchet (2016) for a derivation.

The gradient estimator in Algorithm 3 differs from the standard 2d-point Kiefer-Wolfowitz

type estimator in that it uses multiplication by a random variable K(r) with a well-chosen

kernel K. On the other hand, it is also different from the previous kernel-based estimators

in zero-order optimization literature Akhavan et al. (2020); Bach and Perchet (2016); Polyak

and Tsybakov (1990) in that it needs 2d function queries per step, whereas those estimators

require only one or two queries; see, in particular, Algorithm 1 in Akhavan et al. (2020) for a

comparison. At first sight, this seems a big drawback of the estimator proposed here, however

we will show below that thanks to this estimator we achieve both a more efficient optimization

procedure and better rate of convergences for the optimization error.

When the estimator in Algorithm 3 is used at the t-th outer step of Algorithm 2, it should

be intended as a random variable that depends on the randomization used during the current
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estimation at the given node, as well as on the randomness of the past iterations, inducing

the σ-algebra Ft (see Section 3.5 for the definition). Bounds for the bias of this estimator

conditional on the past and for its second moment play an important role below, in our analysis

of the convergence rates. These bounds are presented in the next two lemmas, whose proofs

are presented in Section 3.9. We state them in the simpler setting of Algorithm 3, with no

reference to the filtration (Ft)t∈N.

Lemma 3.4.1. Let f : Rd → R be a function in Fβ(L), β ≥ 2, and let the random variables

ξ1, . . ., ξd and ξ′1, . . ., ξ
′
d be independent of r and satisfy E[|ξj |] <∞, E[|ξ′j |] <∞, for j = 1, . . ., d.

Let the kernel satisfy conditions (3.3). If the gradient estimator g of f given by Algorithm 3 then,

for all x ∈ Rd,

∥E[g]−∇f(x)∥ ≤ Lκβ
√
dhβ−1.

It is straightforward to see that the bound of Lemma 3.4.1 holds when the estimators are

build recursively during the execution of Algorithm 1 and the expectation is taken conditionally

on Ft. This will be used in the proofs.

Lemma 3.4.2. Let f : Rd → R be 2-smooth and let maxx∈Θ ∥∇f(x)∥ ≤ G, κ ≡
∫
K2(u)du <

∞. Let the random variables ξ1, . . . , ξd and ξ′1, . . . , ξ
′
d be independent of r and E[ξ2j ] ≤ σ2,

E[(ξ′j)2] ≤ σ2 for j = 1, . . . , d. If g is defined by Algorithm 3, where x is a random variable with

values in Θ independent of r and depending on ξ1, . . . , ξd and ξ′1, . . . , ξ
′
d in an arbitrary way,

then

E∥g∥2 ≤ 3dκ

2

(
σ2

h2
+

3L̄2

4
h2
)
+ 9G2κ.

3.5 Noise Model

Algorithm 3 is called to compute estimators of gradients of the local functions fi, i = 1, . . . n, at

each iteration t of Algorithm 2. Thus, we assume that agent i at iteration t generates a uniform

random variable ri(t) ∼ U [−1, 1] and gets 2d noisy observations, defined, for j = 1, . . . , d

yi,j(t) = f(xi(t) + htri(t)ej) + ξi,j(t)

y′i,j(t) = f(xi(t) + htri(t)ej) + ξ′i,j(t)

where the parameters ht > 0 will be specified later.

In what follows, we denote by Ft the σ-algebra generated by the random variables xi(t),

for i = 1, . . . , n. In order to meet the conditions of Lemmas 3.4.1 and 3.4.2 for each (i, t), we

impose the following assumption on the collection of random variables (ri(t), ξi,j(t), ξ
′
i,j(t)).

Assumption 3.5.1. For all integers t and i ∈ {1, . . . , n} the following properties hold.

(i) The random variables ri(t) ∼ U [−1, 1] are independent of ξi,1(t), . . . ξi,d(t), ξ′i,1(t), . . . , ξ
′
i,d(t)

and from the σ-algebra Ft,
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(ii) E[(ξi,j(t))2] ≤ σ2, E[(ξ′i,j(t))2] ≤ σ2 for j = 1, . . . , d, and some σ ≥ 0.

Assumption 3.5.1 is very mild. Indeed, its part (i) occurs as a matter of course since it is

unnatural to assume dependence between the random environment noise and artificial ran-

dom variables ri(t) generated by the agents. We state (i) only for the purpose of formal rigor.

Remarkably, we do not assume the noises ξi,j(t) and ξ′i,j(t) to have zero mean. What is more,

these variables can be deterministic and no independence between them for different i, j, t is

required, so we consider an adversarial environment. Having such a relaxed assumption on

the noise is possible because of the multiplication by the zero-mean variable K(r) in Algorithm

3. This and the fact that all components of the vectors are treated separately allows the proofs

go through without the zero-mean assumption and under arbitrary dependence between the

noises.

3.6 Main Results

In this section, we provide upper bounds on the performance of the proposed algorithms.

Recall that T0 is the number of outer iterations in Algorithm 2. Let T be the total number of

times that we observed noisy values of each fi. At each iteration of Algorithm 3 we make 2d

queries. Thus, to keep the total budget equal to T we need to make T0 = T/(2d) steps of

Algorithm 2 (assuming that T/(2d) is an integer). We compare our results to lower bounds for

any algorithm with the total budget of T queries.

For given β ≥ 2, we choose the tuning parameters ηt and h = ht in Algorithms 1 and 3 as

ηt =
2

αt
, and ht = t

− 1
2β . (3.4)

Inspection of the proofs in Section 3.9 shows that these values of ηt and ht lead to the best

rates minimizing the bounds. As one can expect, there are two contributions to the bounds,

one representing the usual stochastic optimization error, while the second one accounts for

the distributed character of the problem. This second contribution to the bounds is driven by

the following quantity that we call the mean discrepancy: ∆(t) ≡ n−1
∑n

i=1 E[
∥∥xi(t)− x̄(t)

∥∥2].
It plays an important role in our argument and may be of interest by itself, cf. Tang et al.

(2019). The next lemma gives a control of the mean discrepancy.

Lemma 3.6.1. Let Assumptions 3.2.1, 3.3.4, and 3.5.1 hold. Let Θ be a convex compact

subset of Rd. Assume that diam(Θ) ≤ K and maxx∈Θ ∥∇f(x)∥ ≤ G. If the updates xi(t), x̄(t)

are defined by Algorithm 1, in which the gradient estimators for i-th agent are defined by

Algorithm 3 with F = fi, i = 1, . . . , n, and parameters (3.4) then

∆(t) ≤ A
(

ρ

1− ρ

)2 d

α2
t
− 2β−1

β , (3.5)
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where A is a constant independent of t, d, α, n, ρ. The explicit value of A can be found in the

proof.

Proof Sketch. Let V (t)=
∑n

i=1

∥∥xi(t)−x̄(t)∥∥2, and zi(t)=ProjΘ
(
xi(t)−ηtgi(t)

)
−(xi(t)−ηtgi(t)).

The first step is to show that, due to the definition of the algorithm and Assumptions 3.2.1 on

matrix W , we have

V (t+ 1) ≤ ρ2
n∑

i=1

∥∥xi(t)− x̄(t)− ηt(g
i(t)− ḡ(t)) + zi(t)− z̄(t)

∥∥2 , (3.6)

where ḡ(t) and z̄(t) denote the averages of gi(t)’s and zi(t)’s over the agents i. From (3.6),

by using the fact that ∥zi(t)∥ ≤ ηt∥gi(t)∥, applying Lemma 3.4.1 conditionally on Ft, taking

expectations and then applying Lemma 3.4.2 we deduce the recursion

∆(t+ 1) ≤ ρ∆(t) +A1
ρ2

1− ρ
· d
α2
t
− 2β−1

β ,

where A1 > 0 is a constant. The initialization of Algorithm 1 is chosen so that ∆(1) = 0. It

follows that ∆(t) is bounded by a discrete convolution that can be carefully evaluated leading

to (3.5).

Using Lemma 3.6.1 we obtain the following theorem.

Theorem 3.6.2. Let f be an α-strongly convex function and let the assumptions of Lemma

3.6.1 be satisfied. Then for any x ∈ Θ the cumulative regret satisfies

T0∑
t=1

E
[
f(x̄(t))− f(x)

]
≤ d

α(1− ρ)
T

1
β

0

(
B1 + B2ρ

2
)
+

B3

α(1− ρ)
(log(T0) + 1),

where the positive constants Bi are independent of T0, d, α, n, ρ. The explicit values of these

constants can be found in the proof. Furthermore, if x∗ is the minimizer of f over Θ the

optimization error of the averaged estimator x̂(T0) = 1
T0

∑T0
t=1 x̄(t) satisfies

E[f(x̂(T0))− f(x∗)] ≤ d

α(1− ρ)
T
−β−1

β

0

(
B1 + B2ρ

2
)
+

B3

α(1− ρ)

( log(T0) + 1

T0

)
. (3.7)

Proof sketch. Note first that, due to the definition of Algorithm 1 and to the properties of ma-

trix W we have x̄(t + 1) = x̄(t) − ηtḡ(t) + z̄(t). This resembles the usual recursion of the

gradient algorithm with an additional term z̄(t) = n−1
∑n

i=1 z
i(t), where ∥zi(t)∥ ≤ ηt∥gi(t)∥.

Using this bound and α-strong convexity of f , analyzing the recursion in the standard way and
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taking conditional expectations we obtain that, for any x ∈ Θ,

f(x̄(t))− f(x) ≤ 1

2ηt
E
[
at − at+1|Ft

]
− αat

2
+

2ηt
n

n∑
i=1

E
[ ∥∥gi(t)∥∥2 |Ft

]
+
∥∥E[ḡ(t)|Ft

]
−∇f(x̄(t))

∥∥ ∥x̄(t)− x∥︸ ︷︷ ︸
Bias1

+
1

ηt
E
[
⟨z̄(t), x̄(t)− x⟩|Ft

]
︸ ︷︷ ︸

Bias2

, (3.8)

where at = ∥x̄(t)− x∥2. Here, the term Bias2 is entirely induced by the distributed nature of the

problem. Using the properties of Euclidean projection and some algebra, it can be bounded

as

Bias2 ≤ 3ηt
2(1− ρ)n

n∑
i=1

E
[ ∥∥gi(t)∥∥2 |Ft

]
+

1− ρ

2nηt

n∑
i=1

∥∥xi(t)− x̄(t)
∥∥2 .

On the other hand, Bias1 accumulates two contributions, the first due to the gradient approxi-

mation (cf. Lemma 3.4.1) and the second due to the distributed nature of the problem:

Bias1 ≤ κβL
√
dhβ−1

t ∥x̄(t)− x∥+ L̄

n

n∑
i=1

∥∥xi(t)− x̄(t)
∥∥ ∥x̄(t)− x∥

≤
((κβL)2

α
dh

2(β−1)
t +

αat
4

)
+

(
L̄tα(1− ρ)

n

n∑
i=1

∥∥xi(t)− x̄
∥∥2 + L̄K2

4tα(1− ρ)

)
. (3.9)

Next, we combine inequalities (3.8)–(3.9), take expectations of both sides of the resulting

inequality, and use Lemmas 3.4.2 and 3.6.1 to bound the second moments E
[ ∥∥gi(t)∥∥2 ] and

the mean discrepancy. The final result is obtained by summing up from t = 1 to t = T0 and

recalling that ηt = 2
αt , ht = t

− 1
2β .

Due to α-strong convexity of f , Theorem 3.6.2 immediately implies a bound on the estima-

tion error E[∥x̂(T0)− x∗∥2]. The bound is of the order of the right-hand side of (3.7) divided by

α. Furthermore, we get the following result about local estimators, which follows from a slight

modification of Lemma 3.6.1 and Theorem 3.6.2.

Corollary 3.6.3. Let Assumptions 3.2.1, 3.3.4, and 3.5.1 hold. Let Θ be a convex compact

subset of Rd. Assume that diam(Θ) ≤ K and maxx∈Θ ∥∇f(x)∥ ≤ G. If the updates xi(t)

are defined by Algorithm 1, in which the gradient estimators for i-th agent are defined by

Algorithm 3 with F = fi, i = 1, . . . , n, and parameters ηt = 4
α(t+1) , ht = t

− 1
2β then the local

average estimator x̂i(T0) = 2
T0(T0+1)

∑T0
t=1 tx

i(t) satisfies

E[∥x̂i(T0)− x∗∥2] ≤ Cmin

{
1,

d

α2(1− ρ)
T
−β−1

β

0

(
1 +

nρ2

(1− ρ)T0

)}
, i = 1, . . . , n,

where C > 0 is a positive constant independent of T0, d, α, n, ρ.

We now state a corollary of Theorem 3.6.2 for an algorithm with total budget of T queries.
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Assume that T0 = T/(2d) is an integer. As our algorithm makes 2d queries per step the

estimator x̂(T/(2d)) uses the total budget of T queries. Combining Theorem 3.6.2 with the

trivial bound E[f(x̂(T/(2d))− f(x∗)] ≤ GK we get the following result.

Corollary 3.6.4. Let T ≥ 2d and let the assumptions of Theorem 3.6.2 be satisfied. Then we

have

E[f(x̂(T/(2d))− f(x∗)] ≤ Cmin

{
1,

d2−1/β

α(1− ρ)
T
−β−1

β

}
,

where C > 0 is a positive constant independent of T, d, α, n, ρ.

We now state several important implications of our results.

Remark 3.6.5. Previous bounds on zero-order distributed optimization Qu and Li (2018); Tang

et al. (2019); Yu et al. (2019) contain a dependency of (1−ρ)−2 in the "connectivity" parameter

ρ. While Theorem 3.6.2 covers a more difficult noisy setting, our bound displays a better

dependency of (1 − ρ)−1. Since most common values of 1 − ρ are of the order n−2 (or n−1),

this represents a substantial gain.

Remark 3.6.6. The case n = 1, ρ = 0 corresponds to usual (undistributed) zero-order stochas-

tic optimization. Then Corollary 3.6.4 gives a bound of order min
(
1, d

2−1/β

α T
−β−1

β
)
. This im-

proves upon the bound1 min
(
1, d

2

α T
−β−1

β
)

obtained under the same assumptions in Akhavan

et al. (2020). Still our bound does not match the minimax lower bound established in Akhavan

et al. (2020) and equal to

min
(
max(α, T−1/2+1/β),

d√
T
,
d

α
T
−β−1

β

)
. (3.10)

For α ≍ 1 the lower bound (3.10) scales as min
(
1, dαT

−β−1
β
)
. It has the same behavior in the

interesting regime of α not too small (α ≥ T−1/2+1/β) and T ≥ d. Note, however, that the lower

bound (3.10) is obtained for the setting with i.i.d. noise, while our upper bound is valid under

adversarial noise. Therefore, it may seem rather surprising that the ratio is only d1−1/β.

Remark 3.6.7. With the same budget of queries T , the 2d-point method in Algorithm 3 is

computationally simpler than the methods with one or two queries per step Akhavan et al.

(2020); Bach and Perchet (2016); Polyak and Tsybakov (1990) previously suggested for the

same setting. For example, the method in Akhavan et al. (2020); Bach and Perchet (2016)

prescribes, at each step t = 1, . . . , T , to generate a random variable uniformly distributed

on the unit sphere in Rd. This requires of order d calls of one-dimensional random variable

generator. Overall, in T steps, the number of calls is of order dT . For our method with the
1The recent work Novitskii and Gasnikov (2021) obtains the same improvement using the gradient estimator

of Akhavan et al. (2020). However, as we explain in Remark 3.6.7 that estimator is less appealing from the
computational point of view.
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same budget T , we make of order T0 = T/(2d) steps and at each step we need to call the

generator only once in order to get r ∼ U [−1, 1]. Thus, with the same budget of queries,

Algorithm 3 needs ∼ 1/d2 less calls of random variable generator than the gradient estimator

in Akhavan et al. (2020); Bach and Perchet (2016).

In Section 3.9, we present a numerical comparison between the algorithm proposed in

this paper and that in Akhavan et al. (2020). The results confirm our theoretical findings.

The algorithm of this paper converges faster and the advantage is more pronounced as d

increases.

3.7 Improved Bounds for β = 2

In this section we provide improved upper bounds for the case β = 2 in Corollary 3.6.4, where

we relax the dependency over d, from d3/2 to d.

Following the literature on undistributed zero-order optimization, we use a standard 2-

point method with elements of the analysis developed in Agarwal et al. (2010); Akhavan et al.

(2020); Duchi et al. (2015); Flaxman et al. (2005); Shamir (2013, 2017) among others. Specif-

ically, we define

gi(t) =
d

2ht
(yi(t)−y′i(t))ζi(t) (3.11)

where yi(t) = fi(x
i(t)+htζi(t))+ξi(t), y′i(t) = fi(x

i(t)−htζi(t))+ξ′i(t),

with the random variables ζi(t), 1 ≤ i ≤ n, 1 ≤ t ≤ T , that are i.i.d. uniformly distributed on

the unit Euclidean sphere in Rd. We make the following assumption on the noise analogous

to Assumption 3.5.1.

Assumption 3.7.1. For all integers t and all i ∈ {1, . . . , n} the following properties hold.

(i) The random variables ζi(t) are independent of ξi(t), ξ′i(t) and from the σ-algebra Ft,

(ii) E[(ξi(t))2] ≤ σ2, E[(ξ′i(t))2] ≤ σ2 for some σ ≥ 0.

Theorem 3.7.2. Let f be an α-strongly convex function. Let Assumptions 3.2.1, 3.3.4, and

3.7.1 hold with β = 2. Let Θ be a convex compact subset of Rd, and assume that diam(Θ) ≤ K.

Assume that maxx∈Θ ∥∇fi(x)∥ ≤ G, for 1 ≤ i ≤ n. Let the updates xi(t), x̄(t) be defined by

Algorithm 1, in which the gradient estimator for i-th agent is defined by (3.11), and ηt =
1
αt ,

ht =
(

3d2σ2

2Lαt+9L2d2

)1/4
. Then for the estimator x̃(T ) = 1

T−⌊T/2⌋
∑T

t=⌊T/2⌋+1 x̄(t) we have

E[f(x̃(T ))− f(x∗)] ≤ B
1− ρ

(
d√
αT

+
d2

αT

)
,

where B > 0 is a constant independent of T, d, α, n, ρ.
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The main idea of the proof is to use surrogate functions f̂ it (x), for 1 ≤ i ≤ n, defined, for

every x ∈ Rd, as f̂ it (x) = Efi(x+htζ̃), where the expectation with respect to the random vector

ζ̃ uniformly distributed on the unit ball Bd = {u ∈ Rd : ∥u∥ ≤ 1}. A result, which can be traced

back to Nemirovsky and Yudin (1983) implies the fact that gi(t) is an unbiased estimator of the

gradient of the surrogate function f̂ it at xi(t). Thus, we can consider Algorithm 1 as a gradient

descent for the surrogate function. Then replacing fi and f by the surrogate functions with

the cost of the order h2t , we can recover the initial problem. This method does not work for

β > 2 since the error of approximation by surrogate function becomes of bigger order than

the optimal rate T
−β−1

β . The results that we implement as tools for this section are given in

Section 3.9.

Combining Theorem 3.7.2 with the obvious bound E[f(x̃(T ))− f(x∗)] ≤ GK we obtain

E[f(x̃(T ))− f(x∗)] ≤ B′

1− ρ
min

(
1,

d√
αT

)
, (3.12)

where B′ > 0 is a constant independent of T, d, α, n, ρ. By comparing this upper bound with

the minimax lower bound (3.10) for β = 2, one can note that (3.12) is optimal with respect to

the parameters T and d when α ≍ 1.

3.8 Discussion

We expand our discussion on previous related work, comparing our results to the state-of-the-

art distributed and undistributed zero-order optimization settings, and highlight few key open

problems.

Comparison to Zero-Order Distributed Settings Distributed opimization with noisy func-

tions’ queries was considered in detail in Sahu et al. (2018a,b), where the setting differs from

ours in some key aspects: the updates are obtained not as in Step 2 of Algorithm 1 but rather

via decentralized techniques, matrix W is random, the noise is zero-mean random rather than

adversarial, and 2-point gradient estimator is used. Papers Sahu et al. (2018a,b) provide, for

β = 2 and β = 3, bounds on E[∥xi(T )−x∗∥2] of the order at least n3/2

(1−ρ)2
T−1/2 and n3/2

(1−ρ)2
T−2/3,

respectively, as functions of n, ρ and T . Their bounds contain uncontrolled terms of the form

E[∥xi(k0) − x∗∥2] for some large enough k0 = k0(n, α, d) leaving unclear the resulting rate.

Paper Hajinezhad et al. (2019) considers 2-point methods with stochastic queries but assume

that the noise is the same for both queries and deal with non-convex optimization. Noisy-free

zero-order distributed optimization is studied by Qu and Li (2018); Tang et al. (2019); Yu et al.

(2019). From these, Tang et al. (2019) is the closest to our work as it builds on the updates as

at Step 2 of Algorithm 1 (though without projections). The bounds obtained therein are of the

order (1 − ρ)−2 considered as functions of ρ, although they hold for the larger class of gradi-

ent dominant functions. As noted in Remark 3.6.5 the bound of Theorem 3.6.2 scales only as

(1−ρ)−1 and this bound holds true, in particular, for noisy-free setting, which is its special case
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corresponding to σ = 0. Since most common values of 1 − ρ are of the order n−2 (or n−1),

this represents a substantial gain. Moreover, Theorem 3.6.2 covers a difficult noise setting

as we deal with adversarial noise. It is also worthwhile to note that the first-order distributed

optimization exhibits much better dependency on ρ since bounds that scale as (1−ρ)−1/2 can

be achieved, see (Duchi et al., 2015; Scaman et al., 2019). Some of the references men-

tioned above considered unconstrained optimization while our results deal with constrained

optimization. Note that the only difference in the proofs of the upper bounds for constrained

and unconstrained cases is in the presence of an additional term proportional to the second

moment of the gradient at the update (see Lemma 2.4 in Akhavan et al. (2020) for a similar

argument). Since this additional term is bounded independently of ρ the overall dependency

on ρ remains the same.

Computational and Statistical Advantage of the Proposed Gradient Estimator As we

highlighted in Section 3.6 the gradient estimator in Algorithm 3 requires 2d function queries. At

first sight this seems problematic when the dimension d is high, as they need at least T = 2d

queries. However, the lower bounds in Akhavan et al. (2020); Shamir (2013) reported in

(3.10) above indicate that no estimator can achieve nontrivial convergence rate for zero-order

optimization when T ≲ d
β

β−1 . Thus, having the total budget of T ≫ d queries is a necessary

condition for success of any zero-order stochastic optimization method. Algorithms with one or

two queries per step can, of course, be realized for T ≲ d but in this case they do not enjoy any

nontrivial error behavior. Moreover, by Remark 3.6.7, with the same total budget of queries T ,

the gradient estimator from Algorithm 3 is computationally more efficient2 than the estimators

in Akhavan et al. (2020); Bach and Perchet (2016); Polyak and Tsybakov (1990). Indeed,

with the same budget of queries, it needs 1/d2 less calls of random variable generator than it

would be for the gradient estimator in Akhavan et al. (2020); Bach and Perchet (2016). At the

same time, as detailed in Remark 3.6.6 the proposed gradient estimator yields better rates

on the optimization error. We conclude that the proposed zero-order optimization procedure

provides both a computational and statistical improvement over the state-of-the-art methods

in Akhavan et al. (2020).

Limitations and Future Work A main problem, which remains open, is to study whether

the dependency of (1 − ρ)−1 in the upper bounds in Corollary 3.6.4 and Theorem 3.7.2 is

minimax optimal. Moreover, in the standard (undistributed) setting it remains an open problem

to design a zero-order optimization procedure that meets the minimax lower bound (3.10) with

respect to all problem parameters (T, d, β and α). Further directions of research include the

analysis of disturbed zero-order algorithms for larger classes of functions, such as α-gradient

dominant ones, as well as extension of our results to stochastic updates or asynchronous

activation schemes.
2One may object that the computation bottleneck in zero-order optimization is in function evaluation; however

such costs are external to the optimization procedure, for example they may be performed by black-box software
running on external machines or devices. Thus such costs should not be taken into account in evaluating the
procedure itself. In this sense our computational speedup is important for high dimensional settings.
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3.9 Proofs and numerical illustration

Auxiliary Lemma

Lemma 3.9.1. Let W be a matrix satisfying Assumption 3.2.1 and let xi =
∑n

j=1Wi,ju
j for

i = 1, . . . , n, where u1, . . . , un are some vectors in Rd. Set x̄ = n−1
∑n

i=1 x
i, ū = n−1

∑n
i=1 u

i.

Then
n∑

i=1

∥∥xi − x̄
∥∥2 ≤ ρ2

n∑
i=1

∥∥ui − ū
∥∥2 .

Proof. Introduce the matrices X⊤ = (x1, . . . , xn) ∈ Rd×n, U⊤ = (u1, . . . , un) ∈ Rd×n and the

centering matrix H = I− 1
n⊮⊮

⊤ ∈ Rn×n. Notice that
∑n

i=1

∥∥xi − x̄
∥∥2 = Tr(Σ), where Tr(Σ) is

the trace of the matrix

Σ =
n∑

i=1

(xi − x̄)(xi − x̄)⊤ =
n∑

i=1

xi(xi)⊤ − x̄x̄⊤ = X⊤HX.

It is not hard to check that Tr(Σ) = Tr(U⊤WHWU). Moreover, as W is symmetric and

W⊮ = ⊮ we have HW =W − 1
n⊮⊮

⊤ :=W =WH. Thus, WHW =WH2W = HW
2
H and

Tr(Σ) = Tr(U⊤HW
2
HU) ≤ ∥W 2∥∗Tr(U⊤H2U) ≤ ρ2Tr(U⊤HU) = ρ2

n∑
i=1

∥∥ui − ū
∥∥2 .

Proofs for Section 3.4

Proof of Lemma 3.4.1. By Taylor expansion we have

f(x+hrej)−f(x−hrej)
2h

=
∂f(x)

∂xj
r +

1

h

∑
2≤m≤ℓ,m odd

(rh)m

m!

∂mf(x)

∂xmj
+
R(hrej)−R(−hrej)

2h
,

where |R(±hrej)| ≤ L∥hrej∥β = L|r|βhβ. Using (3.3) it follows that

∣∣∣E[gj ]− ∂f(x)

∂xj

∣∣∣ = ∣∣∣E [f(x+ hrej)− f(x− hrej)

2h
K(r)

]
− ∂f(x)

∂xj

∣∣∣ ≤ Lκβh
β−1,

which implies the result.

Proof of Lemma 3.4.2. Fix j ∈ 1, . . . , d. Using the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) and

the independence between r and (ξj , ξ
′
j) we have

E[g2j ] =
1

4h2
E
[
(f(x+ hrej)− f(x− hrei) + ξi − ξ′i)

2K2(r)
]

(3.13)

≤ 3

4h2
E
[((

f(x+ hrej)− f(x− hrej)
)2

+ 2σ2
)
K2(r)

]
.

85



The same calculations as in the proof of Lemma 2.4 in Akhavan et al. (2020) yield

(
f(x+ hrej)− f(x− hrej)

)2 ≤ 3

(
L̄2

2
∥hrej∥4 + 4⟨∇f(x), hrej⟩2

)
,

Finally, we combine this inequality with (3.13) to obtain

E[g2j ] ≤
3

2
κ

(
σ2

h2
+

3L̄2

4
h2
)
+ 9κE[⟨∇f(x), ei⟩2],

which immediately implies the lemma.

Proofs for Section 3.6

Recall the notation ∆(t) = n−1
∑n

i=1 E[
∥∥xi(t)− x̄(t)

∥∥2], ḡ(t) = 1
n

∑n
i=1 g

i(t), and zi(t) =

ProjΘ
(
xi(t)− ηtg

i(t)
)
− (xi(t)− ηtg

i(t)). We also set z̄(t) = 1
n

∑n
i=1 z

i(t).

Proof of Lemma 3.6.1. Set V (t) =
∑n

i=1

∥∥xi(t)− x̄(t)
∥∥2 . The definition of Algorithm 2 and

Lemma 3.9.1 imply:

V (t+ 1) ≤ ρ2
n∑

i=1

∥∥xi(t)− x̄(t)− ηt(g
i(t)− ḡ(t)) + zi(t)− z̄(t)

∥∥2 .
The result is immediate if ρ = 0. Therefore, in rest of the proof we assume that ρ > 0. We

have

V (t+ 1) ≤ ρ2
n∑

i=1

[
V (t) + η2t

∥∥gi(t)− ḡ(t)
∥∥2 + ∥∥zi(t)− z̄(t)

∥∥2 (3.14)

− 2ηt

〈
xi(t)− x̄(t), gi(t)− ḡ(t)

〉
(3.15)

− 2ηt

〈
gi(t)− ḡ(t), zi(t)− z̄(t)

〉
(3.16)

+ 2
〈
xi(t)− x̄(t), zi(t)− z̄(t)

〉]
. (3.17)

For any z ∈ Rd, we have
∑n

i=1

∥∥gi(t)− ḡ(t)
∥∥2 ≤∑n

i=1

∥∥gi(t)− z
∥∥2, so that

η2t

n∑
i=1

E
[ ∥∥gi(t)− ḡ(t)

∥∥2 |Ft

]
≤ η2t

n∑
i=1

E
[ ∥∥gi(t)∥∥2 |Ft

]
.

Next, from the definition of the projection,

∥∥zi(t)∥∥ =
∥∥∥ProjΘ

(
xi − ηtg

i(t)
)
− (xi − ηtg

i(t))
∥∥∥

≤
∥∥xi − (xi − ηtg

i(t))
∥∥ = ηt

∥∥gi(t)∥∥ . (3.18)
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Therefore, for the term containing
∥∥zi(t)− z̄(t)

∥∥2 in (3.14) we obtain

n∑
i=1

E[
∥∥zi(t)− z̄(t)

∥∥2 |Ft] ≤
n∑

i=1

E[
∥∥zi(t)∥∥2 |Ft] ≤ η2t

n∑
i=1

E
[ ∥∥gi(t)∥∥2 |Ft

]
.

For the expression in (3.15), by decoupling we get

−2ηt

n∑
i=1

E
[〈
xi(t)− x̄(t), gi(t)− ḡ(t)

〉
|Ft

]
≤ λV (t) +

η2t
λ

n∑
i=1

E
[ ∥∥gi(t)∥∥2 |Ft

]
,

where λ > 0 is a value to be chosen later. For the expression in (3.16), we have

−2ηt

n∑
i=1

E
[〈
gi(t)− ḡ(t), zi(t)− z̄(t)

〉
|Ft

]
≤ η2t

n∑
i=1

E
[ ∥∥gi(t)− ḡ(t)

∥∥2 |Ft

]
+

n∑
i=1

E
[ ∥∥zi(t)− z̄(t)

∥∥2 |Ft

]
≤ 2η2t

n∑
i=1

E
[ ∥∥gi(t)∥∥2 |Ft

]
.

Similarly, for the expression in (3.17), using the Cauchy–Schwarz inequality we get

2

n∑
i=1

E
[〈
xi(t)− x̄(t), zi(t)− z̄(t)

〉
|Ft

]
≤ 2

n∑
i=1

E
[ ∥∥xi(t)− x̄(t)

∥∥∥∥zi(t)− z̄(t)
∥∥ |Ft

]
≤ λV (t) +

1

λ

n∑
i=1

E
[ ∥∥zi(t)− z̄(t)

∥∥2 |Ft

]
≤ λV (t) +

η2t
λ

n∑
i=1

E
[ ∥∥gi(t)∥∥2 |Ft

]
.

Combining the above inequalities yields

E[V (t+ 1)|Ft] ≤ ρ2(1 + 2λ)V (t) + ρ2
(
4 +

2

λ

)
η2t

n∑
i=1

E
[ ∥∥gi(t)∥∥2 |Ft

]
. (3.19)

Taking expectations in (3.19) and applying Lemma 3.4.2 we obtain

∆(t+ 1) ≤ ρ2(1 + 2λ)∆(t) + ρ2
(
4 +

2

λ

)
η2t

(
9κG2 + d

(9h2tκL̄2

8
+

3κσ2

2h2t

))
.

Choose here λ = 1−ρ
2ρ . Then, using the fact that ηt = 2

αt , ht = t
− 1

2β we find

∆(t+ 1) ≤ ρ∆(t) +A1
ρ2

1− ρ
· d
α2
t
− 2β−1

β , (3.20)

87



where A1 =
144κG2

d + 18κL̄2 + 24κσ2. Due to the recursion in (3.20) we have, for any t ≥ 3,

∆(t+ 1) ≤ ρt∆(1) +A1
ρ2

1−ρ
· d
α2

t∑
s=1

s
− 2β−1

β ρt−s

≤ A1
ρ2

1−ρ
· d
α2

( 1

⌊ t
2⌋

⌊ t
2
⌋∑

s=1

s
− 2β−1

β

t−1∑
k=t−⌊ t

2
⌋

ρk +
1

⌊ t
2⌋

t∑
s=⌊ t

2
⌋+1

s
− 2β−1

β

t−⌊ t
2
⌋−1∑

k=0

ρk
)
, (3.21)

where ∆(1) = 0 by the choice of initial values and the last inequality uses the fact that if the

function ϕ1(·) is monotone decreasing and ϕ2(·) is monotone increasing then

1

S

S∑
s=1

ϕ1(s)ϕ2(s) ≤

(
1

S

S∑
s=1

ϕ1(s)

)(
1

S

S∑
s=1

ϕ2(s)

)
,

see, e.g., (Devroye et al., 1996, Theorem A.19). The sums in (3.21) satisfy

⌊ t
2
⌋∑

s=1

s
− 2β−1

β ≤ 1+

∫ ∞

1
s
− 2β−1

β =
2β − 1

β − 1
,

t∑
s=⌊ t

2
⌋+1

s
− 2β−1

β ≤ t

2

(
t

2

)− 2β−1
β

= 2
β−1
β t

−β−1
β ,

t−⌊ t
2
⌋−1∑

k=0

ρk ≤ 1

1− ρ
,

t−1∑
k=t−⌊ t

2
⌋

ρk ≤
t−1∑

k=⌊ t
2
⌋

ρk ≤ tρ⌊
t
2
⌋/2 ≤ 8

log(1/ρ)t
,

where the last inequality follows from the fact that ρk ≤ 1
log(1/ρ)k2

for any positive integer k.

Plugging the above inequalities in (3.21) gives

∆(t+ 1) ≤ A1
ρ2

1− ρ

d

α2

( 24

log(1/ρ)t2
2β − 1

β − 1
+ 3(2

β−1
β )

t
− 2β−1

β

1− ρ

)
≤ A2

ρ2

(1− ρ)2
d

α2
t
− 2β−1

β ,

where A2 =
(
242β−1

β−1 + 3(2
β−1
β )
)
A1. Therefore, setting A := 2A2 we conclude that, for t ≥ 3,

∆(t) ≤ A ρ2

(1− ρ)2
d

α2
t
− 2β−1

β .

For t ∈ {1, 2} the bound of the lemma holds trivially since x̄ and all xi belong to the compact

Θ.
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Proof of Theorem 3.6.2. From the definition of Algorithm 2 and (3.18) we obtain

∥x̄(t+ 1)− x∥2 = ∥x̄(t)− x∥2 + ∥z̄(t)∥2 + η2t ∥ḡ(t)∥
2

− 2ηt⟨ḡ(t), x̄(t)− x⟩+ 2⟨z̄(t), x̄(t)− x⟩ − 2ηt⟨z̄(t), ḡ(t)⟩

≤ ∥x̄(t)− x∥2 − 2ηt⟨ḡ(t), x̄(t)− x⟩+ 2⟨z̄(t), x̄(t)− x⟩+ 4η2t
n

n∑
i=1

∥∥gi(t)∥∥2 .
It follows that

⟨ḡ(t), x̄(t)− x⟩ ≤ ∥x̄(t)− x∥2 − ∥x̄(t+ 1)− x∥2

2ηt
+

1

ηt
⟨z̄(t), x̄(t)− x⟩+ 2ηt

n

n∑
i=1

∥∥gi(t)∥∥2 .
The strong convexity assumption implies

f(x̄(t))− f(x) ≤ ⟨∇f(x̄(t)), x̄(t)− x⟩ − α

2
∥x̄(t)− x∥2 .

Combining the last two displays and taking conditional expectations from both sides we get

E
[
f(x̄(t))− f(x)|Ft

]
≤
∥∥E[ḡ(t)|Ft

]
−∇f(x̄(t))

∥∥ ∥x̄(t)− x∥+ 1

2ηt
E
[
at − at+1|Ft

]
+

2ηt
n

n∑
i=1

E
[ ∥∥gi(t)∥∥2 |Ft

]
− α

2
at +

1

ηt
E
[
⟨z̄(t), x̄(t)− x⟩|Ft

]
, (3.22)

where at = ∥x̄(t)− x∥2.
The first term in right hand side of (3.22) is bounded as follows

∥∥E[ḡ(t)|Ft

]
−∇f(x̄(t))

∥∥ ∥x̄(t)− x∥ ≤
[ ∥∥∥∥∥E[ḡ(t)|Ft

]
− 1

n

n∑
i=1

∇fi(xi(t))

∥∥∥∥∥
+

∥∥∥∥∥ 1n
n∑

i=1

∇fi(xi(t))−
1

n

n∑
i=1

∇fi(x̄(t))

∥∥∥∥∥
]
∥x̄(t)− x∥

≤ κβL
√
dhβ−1

t ∥x̄(t)− x∥+ L̄

n

n∑
i=1

∥∥xi(t)− x̄(t)
∥∥ ∥x̄(t)− x∥ , (3.23)

where the last inequality is due to Lemma 3.4.1 and Assumption 3.3.4(ii). We now decouple

the terms in (3.23) using the fact that ab ≤ a2

v + vb2

4 , ∀a, b ≥ 0, v > 0. Thus, we obtain

κβL
√
dhβ−1

t ∥x̄(t)− x∥ ≤
(κβL)

2

α
dh

2(β−1)
t +

α

4
∥x̄(t)− x∥2 (3.24)

and, taking v = tα(1− ρ),

L̄

n

n∑
i=1

∥∥xi(t)− x̄(t)
∥∥ ∥x̄(t)− x∥ ≤ L̄tα(1− ρ)

n

n∑
i=1

∥∥xi(t)− x̄
∥∥2 + L̄K2

4tα(1− ρ)
. (3.25)
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The bound (3.25) brings us to the quantity
∑n

i=1

∥∥xi(t)− x̄(t)
∥∥2 that can be controlled in ex-

pectation via Lemma 3.6.1. Note that the choice of v = tα(1− ρ) here is motivated by the fact

that, once Lemma 3.6.1 is applied (see the end of this proof), it minimizes the final bound in

ρ and α. We could have kept v in the form v = v0t (with an arbitrary parameter v0 > 0) until

the application of Lemma 3.6.1 and then optimize over v0. However, we prefer to insert the

optimal value v0 = α(1− ρ) already at this stage.

Combining (3.24) and (3.25) with (3.23) gives

∥∥E[ḡ(t)|Ft

]
−∇f(x̄(t))

∥∥ ∥x̄(t)− x∥ ≤
(κβL)

2

α
dh

2(β−1)
t +

α

4
∥x̄(t)− x∥2+

+
L̄tα(1− ρ)

n

n∑
i=1

∥∥xi(t)− x̄(t)
∥∥2 + L̄K2

4tα(1− ρ)
. (3.26)

Next, we have

1

ηt
⟨z̄(t), x̄(t)− x⟩ = 1

nηt

n∑
i=1

⟨zi(t), x̄(t)− x⟩

≤ 1

nηt

n∑
i=1

⟨zi(t), x̄(t)−
(
xi(t)− ηtg

i(t)
)
⟩+ ⟨zi(t),

(
xi(t)− ηtg

i(t)
)
− x⟩.

(3.27)

Since ProjΘ(·) is the Euclidean projection on the convex set Θ, for any w ∈ Rd, x ∈ Θ we have

⟨ProjΘ(w)− w,ProjΘ(w)− x⟩ ≤ 0, which implies

⟨ProjΘ(w)− w,w − x⟩ = −∥ProjΘ(w)− w∥2 + ⟨ProjΘ(w)− w,ProjΘ(w)− x⟩ ≤ 0.

Therefore,

⟨zi(t), xi − ηtg
i(t)− x⟩ = ⟨ProjΘ(x

i(t)− ηtg
i(t))− (xi(t)− ηtg

i(t)), xi(t)− ηtg
i(t)− x⟩ ≤ 0.

Applying this inequality in (3.27) and using (3.18) we find

1

ηt
⟨z̄(t), x̄(t)− x⟩ ≤ 1

nηt

n∑
i=1

⟨zi(t),
(
x̄(t)− xi(t)

)
+ ηtg

i(t)⟩

≤ 1

nηt

n∑
i=1

∥∥zi(t)∥∥∥∥xi(t)− x̄(t)
∥∥+ 1

n

n∑
i=1

∥∥zi(t)∥∥∥∥gi(t)∥∥
≤ 1

2nηt

n∑
i=1

[η2t ∥∥gi(t)∥∥2
1− ρ

+ (1− ρ)
∥∥xi − x̄(t)

∥∥2 ]+ ηt
n

n∑
i=1

∥∥gi(t)∥∥2
≤ 3ηt

2(1− ρ)n

n∑
i=1

∥∥gi(t)∥∥2 + 1− ρ

2nηt

n∑
i=1

∥∥xi(t)− x̄(t)
∥∥2 . (3.28)
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Inserting (3.28) and (3.26) in (3.22) and using the fact that ηt = 2
αt we get

E[f(x̄(t))− f(x)|Ft] ≤
1

2ηt
E[at − at+1|Ft]−

α

4
at

+
(1 + 4L̄)tα(1− ρ)

4n

n∑
i=1

∥∥xi − x̄(t)
∥∥2+

+
7ηt

2(1− ρ)n

n∑
i=1

E[
∥∥gi(t)∥∥2 |Ft] +

(κβL)
2

α
dh

2(β−1)
t +

L̄K2

4tα(1− ρ)
.

where the last inequality follows from. Taking the expectations, setting rt := E[at] and applying

Lemma 3.4.2 we get

E
[
f(x̄(t))− f(x)

]
≤ rt − rt+1

2ηt
− α

4
rt +

(1 + 4L̄)tα(1− ρ)

4
∆(t)+ (3.29)

+
7

α(1− ρ)t

(
9κG2 + d

(9h2tκL̄2

8
+

3κσ2

2h2t

))
+

(κβL)
2

α
dh

2(β−1)
t +

L̄K2

4tα(1− ρ)
.

Notice that for our choice of ηt = 2
αt we have

T0∑
t=1

(
rt − rt+1

2ηt
− α

4
rt

)
≤ 0.

Recall that ht = t
− 1

2β . We can see now that this choice of ht is the minimizer of the main term

depending on ht on the right hand side of (3.29), which is (up to multiplicative constant) of the

order of h2(β−1)
t + 1

th2
t
. By substituting this ht in (3.29) and summing over t we get

T0∑
t=1

E
[
f(x̄(t))− f(x)

]
≤ (1 + 4L̄)α(1− ρ)

4

T0∑
t=1

t∆(t) + B1
d

α(1− ρ)
T

1
β

0 +
L̄K2

4α(1− ρ)

(
log(T0) + 1

)
,

where B1 = 7β
(
9κG2

d + (9κL̄
2

8 + 3κσ2

2 )
)
+ β(κβL)

2. Finally, using Lemma 3.6.1 we obtain

T0∑
t=1

E
[
f(x̄(t))− f(x)

]
≤ B1

d

α(1− ρ)
T

1
β

0 + B2
ρ2

1− ρ

d

α
T

1
β

0 +
B3

α(1− ρ)

(
log(T0) + 1

)
,

where B2 =
β(1+4L̄)

4 A, and B3 = L̄K2. This proves the first bound of the theorem. The second

bound (3.7) follows immediately by the convexity of f .

Proof of Corollary 3.6.3. In contrast to the previous proofs, now we have ηt = 4
α(t+1) rather

than ηt = 2
αt .

1◦. Inspection of the proof of Lemma 3.6.1 immediately yields that Lemma 3.6.1 remains
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valid with ηt = 4
α(t+1) instead of ηt = 2

αt , up to a change in constant A. Thus,

∆(t) ≤ Ā
(

ρ

1− ρ

)2 d

α2
t
− 2β−1

β , (3.30)

E
[
∥x̂i(t)− x̄(t)∥2

]
≤ Ān

(
ρ

1− ρ

)2 d

α2
t
− 2β−1

β , i = 1, . . . , n, (3.31)

where Ā > 0 is a constant independent of t, d, α, n, ρ.

2◦. Next, we show that, up to changes in constants Bi, the bound (3.7) of Theorem 3.6.2

remains valid with ηt = 4
α(t+1) instead of ηt = 2

αt if we replace x̂(T0) in (3.7) by the estimator

x̂⋆(T0) :=
2

T0(T0 + 1)

T0∑
t=1

tx̄(t).

Indeed, repeating the proof of Theorem 3.6.2 until (3.29), multiplying both sides of (3.29) by t,

summing up from t = 1 to T0 and using the fact that

T0∑
t=1

(
t(rt − rt+1)

2ηt
− α

4
trt

)
≤ 0 if ηt =

4

α(t+ 1)
,

we find that, for all x ∈ Θ,

T0∑
t=1

tE
[
f(x̄(t))− f(x)

]
≤ (1 + 4L̄)α(1− ρ)

4

T0∑
t=1

t2∆(t) + B̄1
d

α
T
1+ 1

β

0 +
L̄K2

4α(1− ρ)
T0,

where B̄1 is a positive constant independent of T0, d, α, n, ρ. Using (3.30) we get, for all x ∈ Θ,

2

T0(T0 + 1)

T0∑
t=1

tE
[
f(x̄(t))− f(x)

]
≤ B̄2

d

α(1− ρ)
T
−1+ 1

β

0 ,

where B̄2 is a positive constant independent of T0, d, α, n, ρ. In view of the convexity of f , it

follows that

E
[
f(x̂⋆(T0))− f(x∗)

]
≤ B̄2

d

α(1− ρ)
T
−1+ 1

β

0 .

As f is strongly convex we also have

E
[
∥x̂⋆(T0)− x∗∥2

]
≤ 2B̄2

d

α2(1− ρ)
T
−1+ 1

β

0 . (3.32)
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On the other hand, convexity of function ∥ · ∥2 implies that

∥x̂i(T0)− x̂⋆(T0)∥2 =
∥∥∥ 2

T0(T0 + 1)

T0∑
t=1

t(xi(t)− x̄(t))
∥∥∥2

≤ 2

T0(T0 + 1)

T0∑
t=1

t∥xi(t)− x̄(t)∥2. (3.33)

Combining (3.31) and (3.33) we obtain

E
[
∥x̂i(T0)− x̂⋆(T0)∥2

]
≤ C̄n

(
ρ

1− ρ

)2 d

α2
T
− 2β−1

β

0 , (3.34)

where C̄ > 0 is a constant independent of T0, d, α, n, ρ. The desired result now follows from

(3.32), (3.34) and the fact that ∥x̂i(T0)− x∗∥ is trivially bounded by the diameter of Θ.

Proofs for Section 3.7

We first restate the following three lemmas from Akhavan et al. (2020).

Lemma 3.9.2. Let for β = 2, Assumptions 3.3.4 and 3.7.1 hold. Let ḡ(t) be the average of

gradient estimators for n agents defined each by (3.11), and h = ht. If maxx∈Θ ∥∇fi(x)∥ ≤ G,

for 1 ≤ i ≤ n, then

E[∥ḡ(t)∥2] ≤ 9κ
(
G2d+

L2d2h2t
2

)
+

3κd2σ2

2h2t
.

Introduce the notation

f̂t(x) = Ef(x+ htζ̃), ∀x ∈ Rd,

and

f̂ it (x) = Efi(x+ htζ̃), ∀x ∈ Rd.

Lemma 3.9.3. Suppose fi is differentiable. For the conditional expectation given Ft, we have

E[gi(t)|Ft] = ∇f̂ it (xi(t)).

Lemma 3.9.4. If f is α-strongly convex then f̂t is α-strongly convex. If f ∈ F2(L), for any

x ∈ Rd and ht > 0, we have

|f̂t(x)− f(x)| ≤ Lh2t ,

and

|Ef(x± htζt)− f(x)| ≤ Lh2t .
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Lemma 3.9.5. Let Assumptions 3.2.1, 3.3.4, and 3.7.1 hold with β = 2. Let Θ be a convex

compact subset of Rd, and assume that diam(Θ) ≤ K. Assume that maxx∈Θ ∥∇fi(x)∥ ≤ G,

for 1 ≤ i ≤ n. Let the updates xi(t), x̄(t) be defined by Algorithm 2, in which the gradient

estimator for i-th agent is defined by (3.11), and ηt = 1
αt , ht =

(
3d2σ2

2Lαt+9L2d2

)1/4
. Then

∆(t) ≤
( ρ

1− ρ

)2(
A′

1

d

α3/2
t−

3
2 +A′

2

d2

α2
t−2
)
,

where A′
1 and A′

2 are positive constants independent of T, d, α, n, ρ.

Proof. Similarly to Lemma 3.6.1 we obtain

E[V (t+ 1)|Ft] ≤ ρ2(1 + 2λ)V (t) + ρ2(4 +
2

λ
)η2t

n∑
i=1

E[
∥∥gi(t)∥∥2 |Ft].

Choosing λ = 1−ρ
2ρ and using Lemma 3.9.2 we get

E[V (t+ 1)|Ft] ≤ ρV (t) +
4ρ2

1− ρ
η2t

(
9(G2d+

L2d2h2t
2

) +
3d2σ2

2h2t

)
.

Taking here the expectations and setting ηt = 1
αt and ht =

(
3d2σ2

2Lαt+9L2d2

)1/4
yields

∆(t+ 1) ≤ ρ∆(t) +
ρ2

1− ρ

(
A′

3

d

α3/2t3/2
+A′

4

d2

α2t2

)
with A′

3 = 2
√
6Lσ, and A′

4 = 12
√
3Lσ + 36G2

d . On the other hand, by recursion we have

∆(t+ 1) ≤ ρt∆(1) +
ρ2

1− ρ

d

α3/2

(
A′

3

t∑
s=1

s−
3
2 ρt−s +A′

4

d

α1/2
+

t∑
s=1

s−2ρt−s
)
.

Here ∆(1) = 0 due to the initialization. The sums on right hand side can be estimated by

using an argument, which is quite analogous to what was done in the proof of Lemma 3.6.1,

after equation (3.21), leading to the result of the lemma.

Lemma 3.9.6. Let the assumptions of Lemma 3.9.5 hold and let f be an α-strongly convex

function. Then

E[∥x̄(t)− x∗∥2] ≤ C
1− ρ

(
d

t1/2α3/2
+

d2

tα2

)
,

where C > 0 is a constant independent of T, d, α, n, ρ.

Proof. First note that due to the strong convexity assumption we have

∥x̄(1)− x∗∥2 ≤ G2

α2
.
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Therefore, for t = 1 the result holds. For t ≥ 2, by the definition of the algorithm we have

∥x̄(t+ 1)− x∗∥2 ≤ ∥x̄(t)− x∗∥2 + η2t ∥ḡ(t)∥
2 + ∥z̄(t)∥2 − 2ηt⟨ḡ(t), z̄(t)⟩−

− 2ηt⟨ḡ(t), x̄(t)− x∗⟩+ 2⟨x̄(t)− x∗, z̄(t)⟩.

Taking conditional expectations we get

E[at+1|Ft] ≤ at +
2η2t
n

n∑
i=1

E[
∥∥gi(t)∥∥2 |Ft]− 2ηtE[⟨ḡ(t), z̄(t)⟩|Ft]− (3.35)

− 2ηtE[⟨ḡ(t), x̄(t)− x∗⟩|Ft] + 2E[⟨x̄(t)− x∗, z̄(t)⟩|Ft], (3.36)

where we used the fact that
∥∥zi(t)∥∥ ≤ ηt

∥∥gi(t)∥∥ for 1 ≤ i ≤ n.

For the term −2ηtE[⟨ḡ(t), x̄(t)− x∗⟩|Ft] in (3.35), we have

−2ηtE[⟨ḡ(t), x̄(t)− x∗⟩|Ft] ≤ −2ηt
n

n∑
i=1

(
E[⟨gi(t)−∇f̂ it (xi(t)), x̄(t)− x∗⟩|Ft]+ (3.37)

+ ⟨∇f̂ it (xi(t))−∇f̂ it (x̄(t)), x̄(t)− x∗⟩+ (3.38)

+ ⟨∇f̂t(x̄(t)), x̄(t)− x∗⟩
)

(3.39)

For the term in (3.37), by Lemma 3.9.3 we have

−2ηt
n

n∑
i=1

E[⟨gi(t)−∇f̂ it (xi(t)), x̄(t)− x∗⟩|Ft] = 0.

For the term in (3.38), decoupling yields

−2ηt
n

n∑
i=1

⟨∇f̂ it (xi(t))−∇f̂ it (x̄(t)), x̄(t)− x∗⟩ ≤ ηttα

n
(1− ρ)V (t) +

L̄2ηt
tα

1

1− ρ
at.

Next, we use the strong convexity (cf. Lemma 3.9.4) to handle (3.39):

−2ηt⟨∇f̂t(x̄(t)), x̄(t)− x∗⟩ ≤ −2ηtαat.

Finally, for the term containing 2⟨x̄(t)− x∗, z̄(t)⟩ in (3.36) we obtain similarly to (3.28) that

2E[⟨x̄(t)− x∗, z̄(t)⟩|Ft] ≤
3η2t

(1− ρ)n

n∑
i=1

E[
∥∥gi(t)∥∥2 |Ft] +

1− ρ

n
V (t).
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Combining the above inequalities yields

E[at+1|Ft] ≤ (1− 2ηtα)at +
2η2t
n

n∑
i=1

E[∥ḡ(t)∥2 |Ft]− 2ηtE[⟨ḡ(t), z̄(t)⟩|Ft] +
ηtL̄

2K2

tα(1− ρ)
+

+
ηttα+ 1

n
(1− ρ)V (t) +

3η2t
(1− ρ)n

n∑
i=1

E[
∥∥gi(t)∥∥2 |Ft].

Now, recalling that ηt = 1
tα , ht =

(
3d2σ2

2Lαt+9L2d2

)1/4
, taking the expectations and applying

Lemma 3.9.2 we find

rt+1 ≤
(
1− 2

t

)
rt + 2(1− ρ)∆(t) +

C

(1− ρ)

( d

t3/2α3/2
+

d2

t2α2

)
, (3.40)

where rt = E[at], and C > 0 is a constant independent of T, d, α, n, ρ. Using Lemma 3.9.5 to

bound ∆(t) in (3.40) we get

rt+1 ≤
(
1− 2

t

)
rt +

C ′

(1− ρ)

( d

t3/2α3/2
+

d2

t2α2

)
,

where C ′ > 0 is a constant independent of T, d, α, n, ρ. The desired result follows from this

recursion by applying (Akhavan et al., 2020, Lemma D.1).

Proof of Theorem 3.7.2. Fix x ∈ Θ. Due to the α-strong convexity of f̂t, we have

f̂t(x̄(t))− f̂t(x
∗) ≤ ⟨∇f̂t(x̄(t)), x̄(t)− x∗⟩ − α

2
∥x̄(t)− x∗∥2 .

Thus, by Lemma 3.9.4 we get

f(x̄(t))− f(x∗) ≤ 2Lh2t + ⟨∇f̂t(x̄(t)), x̄(t)− x∗⟩ − α

2
∥x̄(t)− x∗∥2 .

Let at = ∥x̄(t)− x∗∥2. Taking conditional expectations and applying Lemma 3.9.3 we obtain

E[f(x̄(t))− f(x∗)|Ft] ≤ 2Lh2t +
1

n

n∑
i=1

⟨∇f̂ it (x̄(t))−∇f̂ it (xi(t)), x̄(t)− x∗⟩ − α

2
at

+ E[⟨ḡ(t), x̄(t)− x∗⟩|Ft]

≤ 2Lh2t +
1

n

n∑
i=1

E[⟨∇f̂ it (x̄(t))−∇f̂ it (xi(t)), x̄(t)− x∗⟩|Ft]

− α

2
at +

at − E[at+1|Ft]

2ηt

+
1

ηt
E[⟨z̄(t), x̄(t)− x∗⟩|Ft] +

2ηt
n

n∑
i=1

E[
∥∥gi(t)∥∥2 |Ft],
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where the last inequality uses the definition of the algorithm. Now, by decoupling we find

1

n

n∑
i=1

⟨∇f̂ it (x̄(t))−∇f̂ it (xi(t)), x̄(t)− x∗⟩ ≤ tα

2n
(1− ρ)V (t) +

1

2(1− ρ)

L̄2

tα
K2,

while similarly to (3.28) we also have

1

ηt
E[⟨z̄(t), x̄(t)− x∗⟩|Ft] ≤

1

1− ρ

3ηt
2n

n∑
i=1

E[
∥∥gi(t)∥∥2 |Ft] + (1− ρ)

1

2nηt
V (t).

Combining the above inequalities and applying Lemma 3.9.2 yields

E[f(x̄(t))− f(x∗)|Ft] ≤
( 1

ηt
+ tα

)1− ρ

2n
V (t) +

1

2(1− ρ)

L̄2

tα
K2 − α

2
at +

at − E[at+1|Ft]

2ηt
+

+ 2Lh2t +

(
2 +

3

2(1− ρ)

)
ηt
n

n∑
i=1

E[
∥∥gi(t)∥∥2 |Ft]. (3.41)

Let rt = E[at]. Using the fact that ηt = 1
αt , ht =

(
3d2σ2

2Lαt+9L2d2

)1/4
, taking the expectations in

(3.41) and applying Lemma 3.9.2 we find

E[f(x̄(t))− f(x∗)] ≤ tα
(rt − rt+1

2

)
− α

2
rt + (1− ρ)αt∆(t) +

C1

1− ρ

( d√
αt

+
d2

αt

)
,

where C1 > 0 is a constant independent of T, d, α, n, ρ. Summing up both sides over t gives

T∑
t=⌊T

2
⌋+1

E[f(x̄(t))− f(x∗)] ≤ r⌊T
2
⌋+1

⌊T2 ⌋α
2

+ (1− ρ)α
T∑

t=⌊T
2
⌋+1

t∆(t) +
C2

1− ρ

(d√T√
α

+
d2

α

)

where C2 > 0 is a constant independent of T, d, α, n, ρ. We now apply Lemma 3.9.5 to bound

∆(t) and Lemma 3.9.6 to bound r⌊T
2
⌋+1. It follows that

T∑
t=⌊T

2
⌋+1

E[f(x̄(t))− f(x∗)] ≤ C3

1− ρ

(d√T√
α

+
d2

α

)
,

where C3 > 0 is a constant independent of T, d, α, n, ρ. The desired bound for E[f(x̃(T )) −
f(x∗)] follows from this inequality by the convexity of f .

Numerical Experiments

In this section we present a numerical comparison between the proposed method and the

zero-order method in Akhavan et al. (2020) based on 2-point gradient estimator. Since the goal

is to study the effect of the new gradient estimator, we consider the standard (undistributed)
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setting.

We wish to minimize the following function f : Rd → R,

f(x) =
α

2
x⊤Ax+ Lh3

d∑
i=1

ψ(h−1xi), (3.42)

where α,L, h are positive parameters, A is a positive definite matrix in Rd×d with smallest

eigenvalue equal to 1, and ψ(x) =
∫ x
−∞

∫ z
−∞ ϕ(t)dtdz, with

ϕ(x) =



0 if x < −a
2
ax+ 2 if − a ≤ x < −a

2

− 2
ax if − a

2 ≤ x ≤ a
2

2
ax− 2 if a

2 ≤ x ≤ a

0 if a < x,

where a > 0. A direct computation gives that

ψ(x) =



0 if x < −a
x3

3a + ax2 + ax+ a2

3 if − a ≤ x < −a
2

−x3

3a + a
2x+ a2

4 if − a
2 ≤ x ≤ a

2
x3

3a − ax2 + ax+ a2

6 if a
2 ≤ x ≤ a

a2

2 if a < x.

Let Θ = {x ∈ Rd : ∥x∥ ≤ 1, and xi ≤ 0, for 1 ≤ i ≤ d}. Since for any x ∈ Θ, ϕ(x) ≥ 0, then

ψ is convex on Θ, which implies α-strong convexity of f on Θ. Also, the second derivative

of Lh3ψ(h−1x) is Lipschitz continuous with Lipschitz constant equal to 2L
a . Therefore f is

β-Hölder with β = 3. We choose the kernel function, K : [−1, 1] → R, such that K(x) =
15
8 x(5 − 7x3). For each iteration t, we fix ht = t−

1
6 , and ηt = 2

αt . Function evaluations at a

fixed point x ∈ Rd are obtained in the form f(x) + ζ where ζ is a random variable uniformly

distributed in [−5, 5].

In this implementation we assign α = 2, h = 10−3, L = 107.5, a = 10. We also let

A = B + I, where B is a randomly generated sparse positive definite matrix in Rd×d and I is

the d-dimensional identity matrix. For the initialization, we generate a d-dimensional Gaussian

random variable and project it on Θ.

98



Figure 3.1: Optimization error vs. number of function evaluations for the 2-Point Estimator in
Akhavan et al. (2020) and our method, run on function (3.42) for different number of variables
(d = 25, 50, 100, 150 clockwise from top-left).

The design of f in (3.42) is inspired by the function that has been used in the proof of

the lower bound in Akhavan et al. (2020). It is a quadratic function plus the perturbation

Lh3
∑d

i=1 ψ(h
−1xi), which adds difficulty to estimation of the minimizer. We have chosen

this worst case function to provide a comparison between two algorithms in a long run and

growing dimension. In Figure 3.1 we display the average optimization error of the method

proposed in this paper and that of the 2-Point estimator from Akhavan et al. (2020) versus

the total number of function evaluations, for different dimensions d. This result is averaged

over 40 trials, corresponding to different random initialization, noisy function evaluations and

randomization in the optimization procedures. We would like to emphasize that both methods

are considered with the same budget of function evaluations, which means that the number of

iterations for the two algorithms differ. Thus, if T is the total number of function evaluations,

the 2-point estimator makes T/2 iterations, while the proposed method makes only T/(2d)

iterations.
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Chapter 4

A gradient estimator via
L1-randomization for online
zero-order optimization with two point
feedback
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This chapter studies online zero-order optimization of convex and Lipschitz functions. We

present a novel gradient estimator based on two function evaluations and randomization on

the ℓ1-sphere. Considering different geometries of feasible sets and Lipschitz assumptions

we analyse online dual averaging algorithm with our estimator in place of the usual gradient.

We consider two types of assumptions on the noise of the zero-order oracle: canceling noise

and adversarial noise. We provide an anytime and completely data-driven algorithm, which is

adaptive to all parameters of the problem. In the case of canceling noise that was previously

studied in the literature, our guarantees are either comparable or better than state-of-the-art

bounds obtained by Duchi et al. (2015) and Shamir (2017) for non-adaptive algorithms. Our
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analysis is based on deriving a new weighted Poincaré type inequality for the uniform measure

on the ℓ1-sphere with explicit constants, which may be of independent interest.

4.1 Introduction

In this work we study the problem of convex online zero-order optimization with two-point

feedback, in which adversary fixes a sequence f1, f2, . . . : Rd → R of convex functions and

the goal of the learner is to minimize the cumulative regret with respect to the best action in a

prescribed convex set Θ ⊆ Rd. This problem has received significant attention in the context

of continuous bandits and online optimization (see e.g., Agarwal et al., 2010; Akhavan et al.,

2020; Bubeck and Cesa-Bianchi, 2012; Bubeck et al., 2017; Flaxman et al., 2005; Gasnikov

et al., 2016; Lattimore and Gyorgy, 2021; Novitskii and Gasnikov, 2021; Saha and Tewari,

2011; Shamir, 2017, and references therein).

We consider the following protocol: at each round t = 1, 2, . . . the algorithm chooses

x′
t,x′′

t ∈ Rd (that can be queried outside of Θ) and the adversary reveals

ft(x′
t) + ξ′t and ft(x′′

t ) + ξ′′t ,

where ξ′t, ξ′′t ∈ R are the noise variables (random or not) to be specified. Based on the above

information and the previous rounds, the learner outputs xt ∈ Θ and suffers loss ft(xt). The

goal of the learner is to minimize the cumulative regret

T∑
t=1

ft(xt)−min
x∈Θ

T∑
t=1

ft(x) .

At the core of our approach is a novel zero-order gradient estimator based on two function

evaluations outlined in Algorithm 4. A key novelty of our estimator is that it employs a random-

ization step over the ℓ1 sphere. This is in contrast to most of the prior work (see e.g., Agarwal

et al., 2010; Akhavan et al., 2020, 2021; Bach and Perchet, 2016; Duchi et al., 2015; Flaxman

et al., 2005; Gasnikov et al., 2017; Nemirovsky and Yudin, 1983; Polyak and Tsybakov, 1990;

Shamir, 2013) that was employing ℓ2 or ℓ∞ type randomizations to define x′
t,x′′

t . We use the

proposed estimator within an online dual averaging procedure to tackle the zero-order online

convex optimization problem, matching or improving the state-of-the-art results. Duchi et al.

(2015) and Shamir (2017) have studied instances of the above problem under the assump-

tion that ξ′t = ξ′′t , which we will further refer to as canceling noise assumption. Specifically,

Duchi et al. (2015) considered the stochastic optimization framework where ft = f , for every t,

and obtained bounds on the optimization error rather than on cumulative regret, while Shamir

(2017) analyzed the case ξ′t = ξ′′t = 0. The results in Duchi et al. (2015); Shamir (2017) are

obtained for the objective functions that are Lipschitz with respect to the ℓq-norm for q = 1 and

q = 2, although, with extra derivations it is possible to extend the above mentioned results
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beyond such cases. The proposed method allows us to improve upon these results in several

aspects.

Contributions. The contributions of the present paper can be summarized as follows. 1)
We present a new randomized zero-order gradient estimator and study its statistical proper-

ties, both under canceling noise and under adversarial noise (see Lemma 4.6.1 and Lemma 4.6.5);

2) In the canceling noise case (ξ′t = ξ′′t ) in Theorem 4.4.1 we show that dual averaging based

on our gradient estimator either improves or matches the state-of-the-art bounds Duchi et al.

(2015); Shamir (2017). We derive the results for Lipschitz functions with respect to all ℓq-

norms, q ∈ [1,∞]. In particular, when q = 1 and Θ is the probability simplex, our bound is

better by a
√
log(d) factor than that of Duchi et al. (2015); Shamir (2017); 3) We propose a

completely data-driven and anytime version of the algorithm, which is adaptive to all param-

eters of the problem. We show that it achieves analogous performance as the non-adaptive

algorithm in the case of canceling noise and only slightly worse performance under adver-

sarial noise. To the best of our knowledge, no adaptive algorithms were developed for zero-

order online problems in our setting so far; 4) As a key element of our analysis, we derive in

Lemma 4.6.3 a weighted Poincaré type inequality (following the terminology of Bobkov and

Ledoux, 2009) with explicit constants for the uniform measure on ℓ1-sphere. This result may

be of independent interest.

Notation. Throughout the paper we use the following notation. We denote by ∥·∥p the

ℓp-norm in Rd. For any x ∈ Rd we denote by x 7→ sign(x) the component-wise sign function

(defined at 0 as 1). We let ⟨·, ·⟩ be the standard inner product in Rd. For p ∈ [1,∞] we introduce

the open ℓp-ball and ℓp-sphere respectively as

Bd
p ≜

{
x ∈ Rd : ∥x∥p < 1

}
and ∂Bd

p ≜
{

x ∈ Rd : ∥x∥p = 1
}

.

For two a, b ∈ R, we denote by a∧ b (resp. a∨ b) the minimum (resp. the maximum) between a

and b. We denote by Γ : (0,∞) → R, the gamma function. In what follows, log always stands

for the natural logarithm and e is Euler’s number.

4.2 The algorithm

Let Θ be a closed convex subset of Rd and let V : Θ → R be a convex function. The procedure

that we propose in this paper is summarized in Algorithm 4.

Intuition behind the gradient estimate. The form of gradient estimator gt in Algorithm

1 is explained by Stokes’ theorem (see Theorem 4.9.1 in Section 4.9 and the discussion that

follows). Stokes’ theorem provides a connection between the gradient of a function f (first

order information) and f itself (zero order information). Under some regularity conditions, it
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Algorithm 4 Zero-Order ℓ1-randomized online dual averaging

Requires Convex function V (·), step size η1 > 0, and parameters ht, for t = 1, 2, . . . ,

Initialization Generate independently vectors ζ1, ζ2, . . . , uniformly distributed on ∂Bd
1 , set

z1 = 0

For t = 1, . . . , do
1. xt = argmaxx∈Θ{ηt⟨zt,x⟩ − V (x)}
2. y′t = ft(xt + htζt) + ξ′ and y′′t = ft(xt + htζt) + ξ′′

3. gt =
d
ht

(y′t − y′′t ) sign (ζt)

4. zt+1 = zt − gt

5. update the step-size ηt+1

establishes that ∫
D
∇f(x) dx =

∫
∂D

f(x)n(x) dS(x) ,

where ∂D is the boundary of D, n is the outward normal vector to ∂D, and dS(x) denotes the

surface measure. Introducing UD and ζ∂D distributed uniformly on D and ∂D respectively,

we can rewrite the above identity as

E[∇f(UD)] =
Vold−1(∂D)

Vold(D)
·E[f(ζ∂D)n(ζ∂D)] ,

where Vold−1(∂D) is the surface area of D and Vold(D) is its volume. In what follows we

consider the special case D = Bd
1 . For this choice of D we have n(x) = 1√

d
· sign(x) with

Vold−1(∂D)/Vold(D) = d3/2 leading to our gradient estimate for the two-point feedback setup.

Computational aspects. Let us highlight two appealing practical features of the ℓ1-

randomized gradient estimator gt in Algorithm 4. First, we can easily evaluate any ℓp-norm of

gt. Indeed, it holds that ∥gt∥p = (d1+1/p/2ht)|y′t− y′′t |, i.e., computing ∥gt∥p only requires O(1)

elementary operations. Second, this gradient estimator is very economic in terms of the re-

quired memory: in order to store gt we only need d bits and 1 float. None of these properties is

inherent to the popular alternatives based on the randomization over the ℓ2-sphere (see e.g.,

Bach and Perchet, 2016; Flaxman et al., 2005; Nemirovsky and Yudin, 1983) or on Gaussian

randomization (see e.g., Ghadimi and Lan, 2013; Nesterov, 2011; Nesterov and Spokoiny,

2017).

To compute gt one needs to generate ζt distributed uniformly on ∂Bd
1 . The most straight-

forward way to do it consists in first generating a d-dimensional vector of i.i.d. centered

scaled Laplace random variables and then normalizing this vector by its ℓ1-norm. The re-

sult is guaranteed to follow the uniform distribution on ∂B1
d (see e.g., Schechtman and Zinn,

1990, Lemma 1). Furthermore, to sample from the centered scaled Laplace distribution one

can simply use inverse transform sampling. Indeed, if U is distributed uniformly on (0, 1), then

log(2U)1 (U > 1/2)− log(2− 2U)1 (U ≥ 1/2) follows centered scaled Laplace distribution.
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4.3 Assumptions

We say that the convex function V (·) is 1-strongly convex with respect to the ℓp-norm on Θ if

V (x′) ≥ V (x) +
〈
w ,x′ − x

〉
+

1

2
∥x − x′∥2p ,

for all x,x′ ∈ Θ and all w ∈ ∂V (x), where ∂V (x) is the subdifferential of V at point x.

Throughout the paper, we assume that p, q ∈ [1,∞], d ≥ 3, and set p∗, q∗ ∈ [1,∞] such

that 1
p + 1

p∗ = 1 and 1
q + 1

q∗ = 1, with the usual convention 1/∞ = 0. We will use the following

assumptions.

Assumption 4.3.1. The following conditions hold:

1. The set Θ ⊂ Rd is compact and convex.

2. There exists V : Θ → R, which is lower semi-continuous, 1-strongly convex on Θ w.r.t.

the ℓp-norm and such that

sup
x∈Θ

V (x)− inf
x∈Θ

V (x) ≤ R2

for some constant R > 0.

3. Each function ft : Rd → R is convex on Rd for all t ≥ 1.

4. For all x,x′ ∈ Rd, and all t ≥ 1 we have |ft(x) − ft(x′)| ≤ L∥x − x′∥q for some constant

L > 0.

Assumption 4.3.1 is rather standard in the study of dual averaging-type algorithms and

have been previously considered in the context of zero-order problems in Duchi et al. (2015);

Shamir (2017). We assume that Θ is compact as we are interested in the worst-case regret,

which ensures that R < +∞. We discuss extensions of our results to the case of unbounded

Θ in Section 4.8. Note that the constant R > 0 is not necessarily dimension independent.

Below we provide two classical examples of V (see e.g., Shalev-Shwartz, 2012, Section 2).

Example 4.3.2. Let Θ be any convex subset of Rd and p ∈ (1, 2]. Then, V (x) = 1
2(p−1)∥x∥2p is

1-strongly convex on Θ w.r.t. the ℓp-norm.

Example 4.3.3. Let Θ =
{

x ∈ Rd : ∥x∥1 = 1 , x ≥ 0
}

. Then1, V (x) =
∑d

j=1 xj log(xj) is

1-strongly convex on Θ w.r.t. the ℓ1-norm and R2 ≤ log(d).

Assumptions on the noise. We consider two different assumptions on the noises ξ′t, ξ′′t .

The first noise assumption is common in the stochastic optimization context (see e.g., Duchi

et al., 2015; Ghadimi and Lan, 2013; Nesterov, 2011; Nesterov and Spokoiny, 2017; Shamir,

2017).

Assumption 4.3.4 (Canceling noise). For all t = 1, 2, . . ., it holds that ξ′t = ξ′′t almost surely.

1We use the convention that 0 log(0) = 0.

104



Formally, Assumption 4.3.4 permits noisy evaluations of function values. However, due to

the fact that we are allowed to query ft at two points, taking difference of y′t and y′′t in the

estimator of the gradient effectively erases the noise. It results in a smaller variance of our

gradient estimator. Importantly, Assumption 4.3.4 covers the case of no noise, that is, the

classical online optimization setting as defined, e.g., in Shalev-Shwartz (2012).

Second, we consider an adversarial noise assumption, which is essentially equivalent to

the assumptions used in Akhavan et al. (2020, 2021).

Assumption 4.3.5 (Adversarial noise). For all t = 1, 2, . . ., it holds that: (i) E[(ξ′t)
2] ≤ σ2 and

E[(ξ′′t )
2] ≤ σ2; (ii) (ξ′t)t≥1 and (ξ′′t )t≥1 are independent of (ζt)t≥1

Assumption 4.3.5 allows for stochastic ξ′t and ξ′′t that are not necessarily zero-mean or

independent over the trajectory. Furthermore, it permits bounded non-stochastic adversarial

noises. Part (ii) of Assumption 4.3.5 is always satisfied. Indeed, ξ′t’s and ξ′′t ’s are coming from

the environment and are unknown to the learner while ζt’s are artificially generated by the

learner. We mention part (ii) only for formal mathematical rigor.

Note that, since the choice of function V belongs to the learner and Θ is given, it is always

reasonable to assume that parameter R is known. At the same time, parameters L and σ may

be either known or unknown. We will study both cases in the next sections.

4.4 Upper bounds on the regret

In this section, we present the main convergence results for Algorithm 4 when L, σ, T are

known to the learner. The case when they are unknown is analyzed in Section 4.5, where we

develop fully adaptive versions of Algorithm 4.

To state our results in a unified way, we introduce the following sequence that depends on

the dimension d and on the norm index q ≥ 1:

bq(d) ≜
1

d+ 1
·

qd
1
q if q ∈ [1, log(d)),

e log(d) if q ≥ log(d).

The value bq(d) will explicitly influence the choice of the step size η > 0 and of the discretiza-

tion parameter h > 0.

The first result of this section establishes the convergence guarantees under the canceling

noise assumption. This case was previously considered by Duchi et al. (2015) and Shamir

(2017).

Theorem 4.4.1. Let Assumptions 4.3.1 and 4.3.4 be satisfied. Then, Algorithm 4 with the

parameters

η =
AR

L

√
d
−1− 2

q∧2
+ 2

p

T
and any h ≤ 7R

100bq(d)
√
T
d

1
2
+ 1

q∧2
− 1

p ,
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where A = (
√
6 +

√
12)−1, satisfies, for any x ∈ Θ,

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤ 11.9 ·RL

√
Td

1+ 2
q∧2

− 2
p .

Note that, as in other related works Duchi et al. (2015); Hu et al. (2016b); Nesterov (2011);

Nesterov and Spokoiny (2017); Shamir (2017), under the canceling noise (or no noise) as-

sumption the discretization parameter h > 0 can be chosen arbitrary small. This is due to the

fact that, under the canceling noise assumption, the variance of the gradient estimate gt is

bounded by a constant independent of h. It is no longer the case under the adversarial noise

assumption as exhibited in the next theorem.

Theorem 4.4.2. Let Assumptions 4.3.1 and 4.3.5 be satisfied. Then Algorithm 4 with the

parameters

η =
R√
TL

(
σbq(d)√

2R

√
Td

4− 2
p+ALd1+

2
q∧2

− 2
p

)− 1
2

and h =

(√
2Rσ

Lbq(d)

) 1
2

T− 1
4d

1− 1
2p ,

where A = 6(1+
√
2)2, satisfies, for any x ∈ Θ,

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤ 11.9 ·RL

√
Td

1+ 2
q∧2

− 2
p

+ 2.4 ·
√
RLσT

3
4 ·


√
qd

1+ 1
q
− 1

p if q ∈ [1, log(d)),√
e log(d)d

1− 1
p if q ≥ log(d).

Comparison to state-of-the-art bounds. We provide two examples of p, q,Θ and com-

pare results for our new method to those of Duchi et al. (2015); Shamir (2017) where only the

canceling noise Assumption 4.3.4 and q ∈ {1, 2} were considered.

Corollary 4.4.3. Let p = q = 2 and Θ = Bd
2 . Then under Assumption 4.3.4, Algorithm 4 with

V : Θ → R defined in Example 4.3.2, satisfies

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤ 11.9 · L

√
dT .

In the setup of Corollary 4.4.3, Duchi et al. (2015) obtain O(L
√
dT log(d)) rate and Shamir

(2017) exhibits O(L
√
dT ), which is the optimal rate. Both results do not specify the leading

absolute constants.

Corollary 4.4.4. Let p = q = 1 and Θ =
{

x ∈ Rd : x ≥ 0, ∥x∥1 = 1
}

. Then under Assump-
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tion 4.3.4, Algorithm 4 with V : Θ → R defined in Example 4.3.3, satisfies

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤ 11.9 · L

√
dT log(d) .

In the setup of Corollary 4.4.4, Shamir (2017) proves the rate O(L
√
dT log(d)) for the

method with ℓ2-randomization. On the other hand, Duchi et al. (2015) derived a lower bound

Ω(
√
dT/ log(d)). Thus, our algorithm further reduces the gap between the upper and the lower

bounds.

Finally, note that in the case p = 1, q = 2 with V : Θ → R defined in Example 4.3.3

the bound of Theorem 4.4.1 is of the order O(
√
T log(d)). This case was handled by an

algorithm with ℓ1-randomization slightly different from ours in Gasnikov et al. (2016) leading to

the suboptimal rate O(
√
dT log(d)).

4.5 Adaptive algorithms

Theorems 4.4.1 and 4.4.2 used the step size η and the discretization parameter h that depend

on the potentially unknown quantities L, σ, and the optimization horizon T . In this section,

we show that, under the canceling noise Assumption 4.3.4, adaptation to unknown L comes

with nearly no price. On the other hand, under the adversarial noise Assumption 4.3.5, our

adaptive rate has a slightly worse dependence on L and σ in the dominant term. The proof

is based on combining the adaptive scheme for online dual averaging (see Section 7.13 in

Orabona, 2019, for an overview) with our bias and variance evaluations, cf. Section 4.6 below.

Theorem 4.5.1. Let Assumptions 4.3.1 and 4.3.4 be satisfied. Then, Algorithm 4 with the

parameters2

ηt =
R√

2.75 ·
∑t−1

k=1 ∥gk∥
2
p∗

and any ht ≤
7R

200bq(d)
√
t
d

1
2
+ 1

q∧2
− 1

p ,

satisfies for any x ∈ Θ

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤ 110.6 ·RL

√
Td

1+ 2
q∧2

− 2
p .

The above result gives, up to an absolute constant, the same convergence rate as that

of the non-adaptive Theorem 4.4.1. In other words, the price for adaptive algorithm does not

depend on the parameters of the problem. Finally, we derive an adaptive algorithm under

Assumption 4.3.5.
2We adopt the convention that η1 = 1 and 1/0 = 1 in the definition of ηt.
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Theorem 4.5.2. Let Assumptions 4.3.1 and 4.3.5 be satisfied. Then, Algorithm 4 with the

parameters

ηt =
R√

2.75 ·
∑t−1

k=1 ∥gk∥
2
p∗

and any ht =

(
6.65

√
6 · R

bq(d)

) 1
2

t−
1
4d

1− 1
2p ,

satisfies for any x ∈ Θ

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤ 110.6 ·RL

√
Td

1+ 2
q∧2

− 2
p

+ 5.9 ·
√
R (σ+L)T

3
4 ·


√
qd

1+ 1
q
− 1

p if q ∈ [1, log(d))√
e log(d)d

1− 1
p if q ≥ log(d)

.

Note that the bound of Theorem 4.5.2 has a less advantageous dependency on σ and L

compared to Theorem 4.4.2, where we had
√
σL instead of σ + L. We remark that if σ is

known but L is unknown, one can recover the
√
σL dependency by selecting ht depending on

σ. We do not state this result that can be derived in a similar way and favor here only the fully

adaptive version.

4.6 Elements of proofs

In this section, we outline major ingredients for the proofs of Theorems 4.4.1 – 4.5.2. The

full proofs can be found in Section 4.9. Here, we only focus on novel elements without re-

producing the general scheme of online dual averaging analysis (see e.g., Orabona, 2019;

Shalev-Shwartz, 2012). Namely, we highlight two key facts, which are the smoothing lemma

(Lemma 4.6.1) and the weighted Poincaré type inequality for the uniform measure on ∂Bd
1

(Lemma 4.6.3) used to control the variance.

Bias and smoothing lemma

First, as in the prior work that was using smoothing ideas (see e.g., Flaxman et al., 2005;

Nemirovsky and Yudin, 1983; Shamir, 2017), we show that our gradient estimate gt is an

unbiased estimator of a surrogate version of ft and establish its approximation properties.

Lemma 4.6.1 (Smoothing lemma). Fix h > 0 and q ∈ [1,∞]. Let f : Rd → R be an L-Lipschitz

function w.r.t. the ℓq-norm. Let U be distributed uniformly on Bd
1 and ζ be distributed uniformly

on ∂B1
d . Let fh(x) ≜ E[f(x + hU)] for x ∈ Rd. Then fh is differentiable and

E

[
d

2h

(
f(x + hζ)− f(x − hζ)

)
sign(ζ)

]
= ∇fh(x) .
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Furthermore, we have for all d ≥ 3 and all x ∈ Rd,

|fh(x)− f(x)| ≤ bq(d)Lh . (4.1)

Finally, if Θ ⊂ Rd is convex, f is convex in Θ+hBd
1 , then fh is convex in Θ and fh(x) ≥ f(x) for

x ∈ Θ.

Proof. There are three claims to prove. For the first one, we notice that ζ has the same

distribution as −ζ, hence,

E

[
d

2h

(
f(x + hζ)− f(x − hζ)

)
sign(ζ)

]
= E

[
d

h
f(x + hζ) sign(ζ)

]
,

and the first claim follows from Theorem 4.9.3 in Section 4.9 (a version of Stokes’, or di-

vergence, theorem) applied to g(·) = f(x + h·) with observation that ∇g(·) = h∇f(x + h·)
where ∇f is the gradient defined almost everywhere and whose existence is ensured by the

Rademacher theorem.

We now prove the approximation property (4.1). Assuming d ≥ 3 grants that log(d) ≥ 1.

Since f is L-Lipschitz w.r.t. the ℓq-norm we get that, for any x ∈ Rd,

|fh(x)− f(x)| ≤ LhE∥U∥q . (4.2)

If q ∈ [1, log(d)) then (4.1) follows from Lemma 4.6.2. If q ≥ log(d) then using again Lemma 4.6.2

we find

E∥U∥q ≤ E∥U∥log(d) ≤
log(d)d

1
log(d)

d+ 1
=
e log(d)

d+ 1
,

which together with (4.2) yields the desired bound.

Finally, if f is convex in Θ+ hBd
1 , then for all x,x′ ∈ Θ and α ∈ [0, 1] we have

fh(αx + (1− α)x′) = E

[
f
(
α(x + hU) + (1− α)(x′ + hU)

)]
≤ αfh(x) + (1− α)fh(x′) .

Thus fh is indeed convex on Θ. Furthermore, again by convexity of f , we deduce that for any

x ∈ Θ

fh(x) = E[f(x + hU)] ≥ E [f(x) + ⟨w , hU⟩] = f(x) where w ∈ ∂f(x) .

The proof of Lemma 4.6.1 relies on the control of the ℓq-norm of random vector U estab-

lished in the next result.

Lemma 4.6.2. Let q ∈ [1,∞) and let U be distributed uniformly on Bd
1 . Then E∥U∥q ≤ qd

1
q

d+1 .

Proof. Let W1, . . . ,Wd,Wd+1 be i.i.d. random variables having the Laplace distribution with

mean 0 and scale parameter 1. Set W = (W1, . . . ,Wd). Then, following (Barthe et al., 2005,
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Theorem 1) we have

U
d
=

W

∥W ∥1 + |Wd+1|
,

where d
= denotes equality in distribution. Furthermore, (Schechtman and Zinn, 1990, Lemma

1) states that the random variables

(W , |Wd+1|)
∥W ∥1 + |Wd+1|

and ∥W ∥1 + |Wd+1| ,

are independent. Hence, for any q ∈ [1,∞), it holds that

E∥U∥q =
E∥W ∥q

E∥(W ,Wd+1)∥1
=

1

d+ 1
E∥W ∥q

(a)

≤ 1

d+ 1

(
E∥W ∥qq

) 1
q

=
d

1
qΓ

1
q (q + 1)

d+ 1

(b)

≤ qd
1
q

d+ 1
,

where (a) follows from Jensen’s inequality and (b) uses the fact that Γ1/q(q+1) ≤ q for q ≥
1.

fr:variance and weighted Poincaré type inequality

We additionally need to control the squared ℓp∗-norm of each gradient estimator gt. This

is where we get the main improvement of our procedure compared to previously proposed

methods. To derive the result, we first establish the following lemma of independent interest,

which allows us to control the variance of Lipschitz functions on ∂Bd
1 . The proof of this lemma

is given in the Section 4.9.

Lemma 4.6.3. Let d ≥ 3. Assume that G : Rd → R is a continuously differentiable function,

and ζ is distributed uniformly on ∂Bd
1 . Then

Var(G(ζ)) ≤ 4

d(d− 2)
E

[
∥∇G(ζ)∥22

(
1 +

√
d∥ζ∥2

)2]
.

Furthermore, if G : Rd → R is an L-Lipschitz function w.r.t. the ℓ2-norm then

Var(G(ζ)) ≤ 4L2

d(d− 2)

(
1 +

√
2d

d+ 1

)2

.

Remark 4.6.4. Since d2/(d(d−2)) ≤ 3 for all d ≥ 3, the last inequality of Lemma 4.6.3 implies

that

Var(G(ζ)) ≤ 12
(
1 +

√
2
)2(

L/d
)2
, ∀d ≥ 3 . (4.3)

We can now deduce the following bound on the squared ℓp∗-norm of gt.
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Lemma 4.6.5. Let p ∈ [1,∞] and p∗ = p
p−1 . Assume that ft is L-Lipschitz w.r.t. the ℓq-norm.

Then, for all d ≥ 3,

E∥gt∥2p∗ ≤ 12(1 +
√
2)2L2d

1+ 2
q∧2

− 2
p +


0 under canceling noise Assumption 4.3.4,

d
4− 2

pσ2

h2
under adversarial noise Assumption 4.3.5.

Proof. Using the definition of gt we get

E[∥gt∥2p∗ | xt] =
d2

4h2
E[(ft(xt + hζt)− ft(xt − hζt) + ξ′t − ξ′′t )

2∥ sign(ζt)∥2p∗ | xt]

=
d
4− 2

p

4h2
E[(ft(xt + hζt)− ft(xt − hζt) + ξ′t − ξ′′t )

2 | xt] .

Let G(ζ) ≜ ft(xt + hζ) − ft(xt − hζ). First, observe that E[G(ζt) | xt] = 0 and under both

Assumption 4.3.4 and Assumption 4.3.5(ii) it holds that E[G(ζt)(ξ
′
t− ξ′′t ) | xt] = 0. Using these

remarks and the fact that under adversarial noise Assumption 4.3.5, E[(ξ′t − ξ′′t )
2 | xt] ≤ 4σ2,

we find:

E[∥gt∥2p∗ | xt] ≤
d
4− 2

p

4h2

Var(G(ζt) | xt) +

0 under cancelling noise Assumption 4.3.4

4σ2 under adversarial noise Assumption 4.3.5

 .

Furthermore, since ft is L-Lipschitz, w.r.t. the ℓq-norm, the map ζ 7→ G(ζ) is
(
2Lhd

1
q∧2

− 1
2
)
-

Lipschitz w.r.t. the ℓ2-norm. Applying (4.3) to bound Var(G(ζt) | xt), yields the desired result.

Note that under adversarial noise Assumption 4.3.5, the bound on squared ℓp∗-norm of

gt gets an additional term d
4− 2

pσ2h−2. In contrast to the case of canceling noise Assump-

tion 4.3.4, this does not allow us to take h arbitrary small hence inducing the bias-variance

trade-off.

4.7 Numerical illustration

In this section, we provide a numerical comparison of our algorithm with the method based on

ℓ2-randomization from Shamir (2017) (see Section 4.9 for the definition). We consider the no

noise model and ft = f , ∀t, with the function f : Rd → R defined as

f(x) = ∥x − c∥2 + ∥x − 0.1 · c∥1 ,

where c = (c1, . . . , cd)
⊤ ∈ Rd such that cj = exp(j)/

∑d
i=1 exp(i) for j = 1, . . . , d. We choose

Θ =
{

x ∈ Rd : ∥x∥1 = 1, x ≥ 0
}

and V (x) =
d∑

j=1

xj log(xj) .
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Figure 4.1: Opt. error vs. number of iterations for ℓ2-randomization (as in Shamir (2017)) and
our method.

As stated in Example 4.3.3, V is 1-strongly convex on Θ w.r.t. the ℓ1-norm and R ≤
√
log(d).

Moreover, f is a Lipschitz function w.r.t. the ℓ1-norm. We deploy the adaptive parameteri-

zation that appears in Theorem 4.5.1. In Figure 4.1 we present the optimization error of the

algorithms, which is defined as

f

(
1

t

t∑
i=1

xi

)
−min

x∈Θ
f(x) .

The results are reported over 30 trials. We plot all the 30 runs alongside the average per-

formance. One can observe that the ℓ1-randomization method behaves significantly better

than the ℓ2-randomization algorithm. The theoretical bound for our method in this setup has a
√
log d gain in the rate.

4.8 Discussion and comparison to prior work

We introduced and analyzed a novel estimator for the gradient based on randomization over

the ℓ1-sphere. We established guarantees for the online dual averaging algorithm with the

gradient replaced by the proposed estimator. We provided an anytime and completely data-

driven algorithm, which is adaptive to all parameters of the problem. Our analysis is based

on deriving a weighted Poincaré type inequality for the uniform measure on the ℓ1-sphere that

may be of independent interest.

Under the canceling noise assumption and q ∈ {1, 2}, our setting is analogous to Duchi et al.

(2015); Shamir (2017). For the case q = p = 2 and canceling noise, we show that the perfor-

mance of our method is the same as in (Shamir, 2017, Corollary 2) up to absolute constants

that were not made explicit in Shamir (2017). For the case of q = p = 1 and canceling noise,

we improved the bound (Shamir, 2017, Corollary 3) by a
√
log(d) factor. For the case q = 2,

p ≥ 1, comparing with the lower bound in (Duchi et al., 2015, Proposition 1), shows that the

result of Theorem 4.4.1 is minimax optimal. For the case q = p = 1, (Duchi et al., 2015,

Proposition 2) shows that our result in Theorem 4.4.1 is optimal up to a log(d) factor.

Under the adversarial noise assumption, Theorem 4.4.2 provides the rate O(T 3/4), that is, we
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get an additional T 1/4 factor compared to the canceling noise case. It remains unclear whether

it is optimal under adversarial noise – this question deserves further investigation. Note that,

under sub-Gaussian i.i.d. noise assumption and q = p = 2, one can achieve the rate Õ(da
√
T )

with a relatively big a > 0 Agarwal et al. (2011); Belloni et al. (2015); Bubeck et al. (2017); Lat-

timore and Gyorgy (2021). In particular, with an ellipsoid type method Lattimore and Gyorgy

(2021) obtains the rate O(d4.5
√
T log(T )2) for the cumulative regret.

Finally, let us discuss the compactness of Θ. It is straightforward to extend the results of The-

orems 4.4.1, 4.4.2 to any closed convex Θ considering the regret against a fixed action x ∈ Θ.

Indeed, using (Orabona, 2019, Corollary 7.9), one only needs to replace R appearing in both

Theorems 4.4.1, 4.4.2 by an upper bound on
√
V (x)− infx′∈Θ V (x′). The adaptive case is

more complicated. One way to tackle this case is to use (Orabona and Pál, 2016, Theorem

1) requiring a control of Emaxt=1,...,T ∥gt∥p∗ . This term can be controlled under the canceling

noise Assumption 4.3.4 using the Lipschitzness of ft’s, so that Theorem 4.5.1 extends to un-

bounded Θ. However, without the canceling noise assumption, following the approach outlined

above, one needs to control Emaxt=1,...,T
|ξ′t−ξ′′t |

ht
. The adversarial noise Assumption 4.3.5 is

not sufficient to reasonably control this term, so that extending Theorem 4.5.2 to unbounded

Θ is not possible without further assumptions.

4.9 Proofs

This section contains the proofs and results omitted from the main body. In Section 4.9 we

recall the appropriate version of the Stokes’ theorem and discuss its applicability for Lipschitz

functions on Bd
1 . In Section 4.9 we provide the proof of Lemma 4.6.3. Finally, in Section 4.9

we provide the proofs of Theorems 4.4.1, 4.4.2, 4.5.1, 4.5.2.

Additional notation For two functions g, η : Rd → R, we denote by η ⋆ g their convolution

defined point-wise for x ∈ Rd as

(
η ⋆ g

)
(x) =

∫
Rd

η(x − x′)g(x′) dx′ .

The standard mollifier ηϵ : Rd → R is defined as ηϵ(x) = ϵ−dη1(x/ϵ) for ϵ > 0 and x ∈ R, where

η1 : Rd → R is defined as

η1(x) =

C exp
(

1
∥x∥22−1

)
if ∥x∥2 ≤ 1

0 otherwise
,

with C chosen so that
∫
Rd η1(x) dx = 1.
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Integration by parts

We first recall the following result that can be found in (Zorich, 2016, Section 13.3.5, Exercise

14a).

Theorem 4.9.1 (Integration by parts in a multiple integral). Let D be an open connected

subset of Rd with a piecewise smooth boundary ∂D oriented by the outward unit normal

n = (n1, . . . , nd)
⊤. Let g be a continuously differentiable function in D ∪ ∂D. Then∫

D
∇g(u) du =

∫
∂D

g(ζ)n(ζ) dS(ζ) .

Remark 4.9.2. We refer to (Zorich, 2016, Section 12.3.2, Definitions 4 and 5) for the definition

of piecewise smooth surfaces and their orientations respectively.

The idea of using the instance of Theorem 4.9.1 (also called Stokes’ theorem) with D = Bd
2

to obtain ℓ2-randomized estimators of the gradient belongs to Nemirovsky and Yudin (1983).

It was further used in several papers (Bach and Perchet, 2016; Flaxman et al., 2005; Shalev-

Shwartz, 2012; Shamir, 2017) to mention just a few. Those papers were referring to Ne-

mirovsky and Yudin (1983) but Nemirovsky and Yudin (1983) did not provide an exact state-

ment of the result (nor a reference) and only tossed the idea in a discussion. However, the

classical analysis formulation as presented in Theorem 4.9.1 does not apply to Lipschitz con-

tinuous functions that were considered in (Bach and Perchet, 2016; Flaxman et al., 2005;

Shalev-Shwartz, 2012; Shamir, 2017). We are not aware of whether its extension to Lipschitz

continuous functions, though rather standard, is proved in the literature.

In this paper, we apply Theorem 4.9.1 with the ℓ1-ball D = Bd
1 . Our aim in this section is to

provide a variant of Theorem 4.9.1 applicable to a Lipschitz continuous function g : Rd → R,

which is not necessarily continuously differentiable on D ∪ ∂D = Bd
1 ∪ ∂Bd

1 . To this end, we

will go through the argument of approximating g by C∞(Ω) functions, where Ω ⊂ Rd is an

open bounded connected subset of Rd such that D ∪ ∂D ⊂ Ω. Let gn = η1/n ⋆ g, where η1/n
is the standard mollifier. Let g : Rd → R be a function satisfying the Lipschitz condition w.r.t.

the ℓ1-norm: |g(u) − g(u′)| ≤ L∥u − u′∥1. Since g is continuous in Ω and, by construction

D ∪ ∂D ⊂ Ω, then using basic properties of mollification (see e.g., Evans and Gariepy, 2018,

Theorem 4.1 (ii)) we have

gn −→ g

uniformly on D ∪ ∂D (in particular, uniformly on ∂D). Furthermore, let ∇g be the gradient of

g, which by Rademacher theorem (see e.g., Evans and Gariepy, 2018, Theorem 3.2) is well

defined almost everywhere w.r.t. the Lebesgue measure and

∥∇g(u)∥∞ ≤ L a.e.
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It follows that ∂g
∂uj

is absolutely integrable on Ω for any j ∈ [d]. Furthermore, since

∂gn
∂uj

= η1/n ⋆

(
∂g

∂uj

)
,

we can apply (Evans and Gariepy, 2018, Theorem 4.1 (iii)) that yields∫
D
∥∇gn(u)−∇g(u)∥2 du −→ 0 .

Combining the above remarks we obtain that the result of Theorem 4.9.1 is valid for functions

g that are Lipschitz continuous w.r.t. the ℓ1-norm. Thus, it is also valid when the Lipschitz

condition is imposed w.r.t. any ℓq-norm with q ∈ [1,∞]. Specifying this conclusion for the

particular case D = Bd
1 , we obtain the following theorem.

Theorem 4.9.3. Let the function g : Rd → R be Lipschitz continuous w.r.t. the ℓq-norm with

q ∈ [1,∞]. Then ∫
Bd
1

∇g(u) du =
1√
d

∫
∂Bd

1

g(ζ) sign(ζ) dS(ζ) ,

where ∇g(·) is defined up to a set of zero Lebesgue measure by the Rademacher theorem.

Proof of Lemma 4.6.3

To prove Lemma 4.6.3, we first recall the weighted Poincaré inequality for the univariate expo-

nential measure (mean 0 and scale parameter 1 Laplace distribution).

Lemma 4.9.4 (Lemma 2.1 in Bobkov and Ledoux (1997)). Let W be mean 0 and scale param-

eter 1 Laplace random variable. Let g : R → R be continuous almost everywhere differentiable

function such that

E[|g(W )|] <∞ and E[|g′(W )|] <∞ and lim
|w|→∞

g(w) exp(−|w|) = 0 ,

then,

E[(g(W )−E[g(W )])2] ≤ 4E[(g′(W ))2].

We are now in a position to prove Lemma 4.6.3. The proof is inspired by (Barthe and Wolff,

2009, Lemma 2).

Proof of Lemma 4.6.3. Throughout the proof, we assume without loss of generality that E[G(ζ)] =

0. Indeed, if it is not the case, we use the result for the centered function G̃(ζ) = G(ζ) −
E[G(ζ)], which has the same gradient.

115



First, consider the case of continuously differentiableG. LetW = (W1, . . . ,Wd) be a vector

of i.i.d. mean 0 and scale parameter 1 Laplace random variables and define T (w) = w/ ∥w∥1.
Introduce the notation

F (w) ≜ ∥w∥1/2
1 G(T (w)) .

Lemma 1 in Schechtman and Zinn (1990) asserts that, for ζ uniformly distributed on ∂Bd
1 ,

T (W )
d
= ζ and T (W ) is independent of ∥W ∥1 . (4.4)

In particular,

Var(F (W )) = dVar(G(ζ)) .

Using the Efron-Stein inequality (see e.g., Boucheron et al., 2013, Theorem 3.1) we obtain

Var(F (W )) ≤
d∑

i=1

E [Vari(F )] ,

where

Vari(F ) = E

[(
F (W )−E[F (W ) |W−i]

)2 |W−i

]
with W−i ≜ (W1, . . . ,Wi−1,Wi+1, . . . ,Wd). Note that on the event {W−i ̸= 0} (whose com-

plement has zero measure), the function

w 7→ F (W1, . . . ,Wi−1, w,Wi+1, . . . ,Wd) ,

satisfies the assumptions of Lemma 4.9.4. Thus,

dVar(G(ζ)) = Var(F (W )) ≤ 4
d∑

j=1

E

[(
∂F

∂wj
(W )

)2
]
= 4E∥∇F (W )∥22 . (4.5)

In order to compute ∇F (W ), we observe that for every i ̸= j ∈ [d] we have for all w ̸= 0 such

that wi, wj ̸= 0

∂Ti
∂wj

(w) = −wi sign(wj)

∥w∥21
and

∂Ti
∂wi

(w) =
1

∥w∥1
− wi sign(wi)

∥w∥21
.

Thus, the Jacobi matrix of T (w) has the form

JT (w) =
I

∥w∥1
− w(sign(w))⊤

∥w∥21
=

1

∥w∥1

(
I− T (w)

(
sign(w)

)⊤)
.
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It follows that almost surely

∇F (W ) =
1

2∥W ∥1/2
1

G(T (W )) sign(W ) +
1

∥W ∥1/2
1

(
I− T (W )

(
sign(W )

)⊤)∇G(T (W )) .

Observe that since ⟨sign(W ) ,T (W )⟩ = 1 almost surely, we have

(
sign(W )

)⊤(
I− T (W )

(
sign(W )

)⊤)∇G(T (W )) = 0 almost surely .

The above two equations imply that almost surely

4∥∇F (W )∥22 =
d

∥W ∥1
G2(T (W )) +

4

∥W ∥1

∥∥∥∥(I− T (W )
(
sign(W )

)⊤)∇G(T (W ))

∥∥∥∥2
2

≤ d

∥W ∥1
G2(T (W )) +

4

∥W ∥1
∥∇G(T (W ))∥22 (1 +

√
d∥T (W )∥2)2 ,

where we used the fact that the operator norm of I−ab⊤ is not greater than 1+∥a∥2∥b∥2. Com-

bining the above bound with (4.5), and using the facts that E[∥W ∥−1
1 ] = 1

d−1 , E[G(T (W ))] =

E[G(ζ)] = 0 and the independence of ∥W ∥1 and T (W ) (cf. (4.4)) yields

d

(
1− 1

d− 1

)
Var(G(ζ)) ≤ 4

d− 1
E
[
∥∇G(T (W ))∥22(1 +

√
d∥T (W )∥2)2

]
.

Rearranging, we deduce the first claim of the lemma since T (W )
d
= ζ.

To prove the second statement of the lemma regarding Lipschitz functions, it is sufficient

to apply the first one to Gn—the sequence of smoothed versions of G such that Gn ∈ C∞(R)
and

Gn −→ G ,

uniformly on every compact subset, and supn≥1 ∥∇Gn(x)∥2 ≤ L for almost all x ∈ Rd. A

sequence Gn satisfying these properties can be constructed by standard mollification due to

the fact that G is Lipschitz continuous (see e.g., Evans and Gariepy, 2018, Theorem 4.2).

Finally, to obtain the value E∥T (W )∥22 = E∥ζ∥22 we use Lemma 4.9.5 below.

Lemma 4.9.5. Let ζ be distributed uniformly on ∂Bd
1 . Then, E ∥ζ∥22 =

2
d+1 .

Proof. We use the same tools as in the proof of Lemma 4.6.2. Let W = (W1, . . . ,Wd) be

a vector of i.i.d. random variables following the Laplace distribution with mean 0 and scale

parameter 1. By (4.4) we have that ζ d
= W

∥W ∥1
and ζ is independent of ∥W ∥1. Therefore,

E∥ζ∥22 =
E ∥W ∥22
E ∥W ∥21

. (4.6)
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Here,

E ∥W ∥22 =
d∑

j=1

E[W 2
j ] = dE[W 2

1 ] = 2d .

Furthermore, ∥W ∥1 follows the Erlang distribution with parameters (d, 1), which implies

E ∥W ∥21 =
1

Γ(d)

∫ ∞

0
xd+1 exp(−x) dx =

Γ(d+ 2)

Γ(d)
. (4.7)

The lemma follows by combining (4.6) – (4.7).

Upper bounds

The proofs of Theorems 4.4.1, 4.4.2, 4.5.1, 4.5.2 resemble each other. They only differ in the

ways of handling the variance terms depending on ∥gt∥2p∗ and in the choice of parameters. For

this reason, we suggest the interested reader to follow the proofs in a linear manner starting

from the next paragraph.

Common part of the proofs of Theorems 4.4.1, 4.4.2. We start with the part of the proofs

that is common for Theorems 4.4.1, 4.4.2. Fix some x ∈ Θ. Due to Assumption 4.3.1, we can

use Lemma 4.6.1, which implies

E

[
T∑
t=1

⟨E [gt | xt] ,xt − x⟩

]
= E

[
T∑
t=1

⟨∇ft,h(xt) ,xt − x⟩

]
≥ E

[
T∑
t=1

(
ft,h(xt)− ft,h(x)

)]
,

where ft,h(x) = E[ft(x+hU)] with U uniformly distributed on Bd
1 . Furthermore, by the approx-

imation property derived in Lemma 4.6.1 and the standard bound on the cumulative regret of

dual averaging algorithm (see e.g., Orabona, 2019, Corollary 7.9.) we deduce that

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤ E

[
T∑
t=1

⟨E [gt|xt] ,xt − x⟩

]
+ Lbq(d)

T∑
t=1

ht

≤ R2

η
+
η

2

T∑
t=1

E ∥gt∥
2
p∗ + Lbq(d)

T∑
t=1

ht ,

(4.8)

where in the last inequality we used the identity η1 = . . . = ηT = η. The results of Theo-

rems 4.4.1, 4.4.2 follow from the bound (4.8) as detailed below.

Proof of Theorem 4.4.1. Here h1 = . . . = hT = h, and we work under Assumption 4.3.4. In

this case, bounding E∥gt∥p∗ in (4.8) via Lemma 4.6.5 yields

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤ R2

η
+ 6(1 +

√
2)2L2 · ηTd1+

2
q∧2

− 2
p + LhTbq(d) .
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Minimizing the the right hand side of the above inequality over η > 0 and substituting η =

R
L(

√
6+

√
12)

√
d
−1− 2

q∧2+ 2
p

T we deduce that

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤ 2

(√
6 +

√
12
)
RLd

1
2
+ 1

q∧2
− 1

p
√
T + LhTbq(d) .

Taking h ≤ 7R
100bq(d)

√
T
d

1
2
+ 1

q∧2
− 1

p makes negligible the second summand in the above bound.

This concludes the proof.

Proof of Theorem 4.4.2. Here again h1 = . . . = hT = h, but we work under Assumption 4.3.5.

Then, bounding E∥gt∥p∗ in (4.8) via Lemma 4.6.5 yields

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤ R2

η
+ ηT

(
d
4− 2

pσ2

h2
+ 6

(
1 +

√
2
)2
L2d

1+ 2
q∧2

− 2
p

)
+ LhTbq(d) .

Minimizing the right hand side of the above inequality over η > 0 and substituting the optimal

value

η =
R√
T

(
d
4− 2

pσ2

2h2
+ 6

(
1 +

√
2
)2
L2d

1+ 2
q∧2

− 2
p

)− 1
2

,

results in the following upper bound on the regret

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤ 2R

√
T

(
d
4− 2

pσ2

2h2
+ 6

(
1 +

√
2
)2
L2d

1+ 2
q∧2

− 2
p

) 1
2

+ LhTbq(d)

≤ 2
(√

6 +
√
12
)
RL

√
Td

1+ 2
q∧2

− 2
p +

√
2R

√
T
d
2− 1

pσ

h
+ LhTbq(d) ,

where for the last inequality we used the fact that
√
a+ b ≤

√
a +

√
b for a, b ≥ 0. Minimizing

over h > 0 the last expression and substituting the optimal value h =
( √

2Rσ
Lbq(d)

) 1
2
T− 1

4d
1− 1

2p we

get

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤ 11.9RL

√
Td

1+ 2
q∧2

− 2
p + 2.4

√
RLσT

3
4

√
bq(d)d

1
2
− 1

2p .

Common part of the proofs of Theorems 4.5.1, 4.5.2. Here, we state the common parts

of the proofs for Theorems 4.5.1, 4.5.2. Similar to the first inequality in (4.8), we have

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤ E

[
T∑
t=1

⟨gt,xt − x⟩

]
+ Lbq(d)

T∑
t=1

ht .

Note that without loss of generality, we can assume that
∑t

k=1 ∥gk∥
2
p∗ ̸= 0, for all t ≥ 1. This

is a consequence of the fact that if
∑t

k=1 ∥gk∥
2
p∗ = 0, then the first term on the r.h.s. of
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the above inequality will be zero up to round t. Thus, we can erase these iterates from the

cumulative regret, only paying the bias term for those rounds. In what follows we essentially

use (Orabona and Pál, 2016, Corollary 1), which we re-derive for the sake of clarity. Assume

that ηt = λ√∑t−1
k=1∥gk∥

2
p∗

for t ∈ {2, . . . , T} and λ > 0. Then, applying (Orabona and Pál, 2016,

Theorem 1) we deduce that

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤
(
R2

λ
+ 2.75 · λ

)
E


√√√√ T∑

t=1

∥gt∥
2
p∗


+ 3.5D ·E[max

t∈[T ]
∥gt∥p∗ ] + Lbq(d)

T∑
t=1

ht ,

where we introduced D = supu,w∈Θ ∥u−w∥p. By (Orabona and Pál, 2016, Proposition 1), we

have D ≤
√
8R. Moreover, by Jensen’s inequality, using the rough bound E[maxt∈[T ] ∥gt∥p∗ ] ≤√∑T

t=1E
[
∥gt∥

2
p∗

]
, and substituting λ = R√

2.75
, we deduce that

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤
(
2
√
2.75 + 3.5

√
8
)
R

√√√√ T∑
t=1

E
[
∥gt∥

2
p∗

]
+ Lbq(d)

T∑
t=1

ht . (4.9)

Proofs of Theorems 4.5.1, 4.5.2 provided below follow from the above inequality by properly

selecting ht > 0.

Proof of Theorem 4.5.1. The bound of Lemma 4.6.5 under Assumption 4.3.4 applied to (4.9)

yields

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤ 2

(
2
√
2.75 + 3.5

√
8
)(√

3 +
√
6
)
RL

√
Td

1+ 2
q∧2

− 2
p + Lbq(d)

T∑
t=1

ht

≤ 110.53 ·RL
√
Td

1+ 2
q∧2

− 2
p + Lbq(d)

T∑
t=1

ht .

Taking ht ≤ 7R
200bq(d)

√
t
d

1
2
+ 1

q∧2
− 1

p makes negligible the last summand in the above bound. This

concludes the proof.

Proof of Theorem 4.5.2. Using (4.9), the bound of Lemma 4.6.5 under Assumption 4.3.5 and
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the fact that
√
a+ b ≤

√
a+

√
b for a, b ≥ 0, we deduce that

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤
(
2
√
2.75 + 3.5

√
8
)
R

(
T∑
t=1

d
4− 2

pσ2

h2t
+ 12(1 +

√
2)2L2T · d1+

2
q∧2

− 2
p

) 1
2

+ Lbq(d)
T∑
t=1

ht

≤ 110.6 ·RL
√
Td

1+ 2
q∧2

− 2
p + 13.3R · d2−

1
pσ

(
T∑
t=1

1

h2t

) 1
2

+ Lbq(d)
T∑
t=1

ht .

Since ht =
(
6.65

√
6 · R

bq(d)

) 1
2
t−

1
4d

1− 1
2p and

∑T
t=1 t

1
2 ≤ 2

3T
3
2 and

∑T
t=1 t

− 1
4 ≤ 4

3T
3
4 , we get

E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
≤ 110.6 ·RL

√
Td

1+ 2
q∧2

− 2
p + 5.9 ·

√
R (σ + L)T

3
4

√
bq(d)d

1
2
− 1

2p .

Definition of ℓ2-randomized estimator

In this section we recall the algorithm of Shamir (2017). Let ζ◦ ∈ Rd be distributed uniformly

on ∂Bd
2 . Instead of the gradient estimator that we introduce in Algorithm 4, at a each step

t ≥ 1, Shamir (2017) uses

g◦
t ≜

d

2h
(y′t − y′′t )ζ

◦
t ,

where y′t = ft(xt + htζ
◦), y′′t = ft(xt − htζ

◦
t ), and ζ◦t ’s are independent random variables with

the same distribution as ζ◦.
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Chapter 5

Zero-order optimization of highly
smooth functions: improved analysis
and a new algorithm
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This chapter studies minimization problems with zero-order noisy Oracle information under

the assumption that the objective function is highly smooth and possibly satisfies additional

properties. We consider two kinds of zero-order projected gradient descent algorithms, which

differ in the form of the gradient estimator. The first algorithm uses a gradient estimator based

on randomization on the ℓ2 sphere. The precise form that we consider is due to Bach and

Perchet (2016) and it has been used for zero-order optimization of strongly convex functions.

We present an improved analysis of this algorithm for the same class of functions and we

derive rates of convergence for more general function classes. In particular, we consider

functions which satisfies the Polyak-Łojasiewicz condition instead of strong convexity, and the

larger class of highly smooth non-convex functions. The second algorithm is based on ℓ1-type

randomization, and it extends the recently proposed algorithm of Akhavan et al. (2022a) who

dealt with Lipschitz convex functions. We show that this novel algorithm enjoys similar theoret-

ical guarantees than the first one and, in the case of noiseless Oracle, it enjoys better bounds.

The improvements are achieved by new bounds on bias and variance for both algorithms,
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which are obtained via Poincaré type inequalities for uniform distributions on ℓ1 or ℓ2 spheres.

The optimality of the upper bounds is discussed and a slightly more general lower bound than

the state-of-the art bound in Akhavan et al. (2020) is presented.

5.1 Introduction

In this work, we study the problem of zero-order optimization for certain types of smooth

functions. Let f : Rd → R and Θ ⊂ Rd, we are interested in solving the following optimization

problem

f⋆ ≜ inf
x∈Θ

f(x) ,

and we assume that f⋆ is finite. One main theme of this paper is to exploit higher order

smoothness properties of the underlying function f in order to improve the performance of the

optimization algorithm. We consider that the algorithm has access to a zero-order stochastic

Oracle, which, given a point x ∈ Rd returns a noisy value of f(x), under a general noise model.

We study two kinds of zero-order projected gradient descent algorithms, which differ in the

form of the gradient estimator. Both algorithms can be written as an iterative update of the

form

x1 ∈ Rd and xt+1 = ProjΘ(xt − ηtgt) t ≥ 1 ,

where gt is a gradient estimator at the point xt, ηt is a step-size, and ProjΘ(·) is the Euclidean

projection operator onto the set Θ. In either case, the gradient estimator is built from two

noisy function values, that are queried at two random perturbations of the current guess for

the solution, and it involves an additional randomization step. The first algorithm uses a form

of ℓ2-randomization, and it has been used previously in the literature (see e.g. Akhavan et al.,

2020; Bach and Perchet, 2016; Novitskii and Gasnikov, 2021; Polyak and Tsybakov, 1990).

The precise form of the gradient estimator that we consider here has been introduced by

Bach and Perchet (2016) and it has been used for zero-order optimization of strongly convex

functions. The second algorithm is a modification of the approach proposed and analysed

in Akhavan et al. (2022a) for online minimization of Lipschitz convex functions. It is based on

an alternative randomization scheme, which uses ℓ1-geometry in place of the ℓ2 one.

A principal goal of this paper is to derive sharper upper bounds for both algorithms under

different assumptions on the underlying function f that we wish to minimize. These assump-

tions are used to set the step size in the algorithms and the perturbation parameter used inside

the gradient estimator. Previous works considered mostly the strongly convex case (Akhavan

et al., 2020; Bach and Perchet, 2016; Novitskii and Gasnikov, 2021; Polyak and Tsybakov,

1990) and in this paper we provide a refined analysis, improving the dependency on the

dimension derived by (Akhavan et al., 2020; Novitskii and Gasnikov, 2021). Furthermore,
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we complement these results by considering the cases of smooth f (not necessary convex),

and smooth f , which additionally satisfies the gradient dominance condition. For the new

algorithm, we establish similar results discussed above and highlight the improvement in the

noiseless case.

Summary of the upper bounds

In this subsection, we give a high-level overview of the main contribution of this work. Apart

from the improved guarantees for the previously studied function classes, one of the main

novelties of our work is the analysis in the case of a non-convex smoothness objective function

f , for which we provide a convergence rate to a stationary point. Furthermore, we study

the case of α-gradient dominant f—a popular relaxation of strong convexity, which includes

non-convex functions. To the best of our knowledge, the analysis of stochastic zero-order

optimization in these two cases is novel. In Section 5.5 we derive lower bounds and discuss

the (sub)-optimality of our convergence rates.

In the following we highlight the guarantee that we derive for the two analysed algorithms.

Each of the guarantees differs in the dependency on the main parameters of the problem,

which is a consequence of the different types of available properties of the objective function.

Let us also mention that we mainly deal with the unconstrained optimization case, Θ = Rd.

This is largely due to the fact that the Polyak-Łojasiewicz inequality is mainly used in the

unconstrained case and the exertion of this condition to the constrained case is still an active

area of research (see e.g., Balashov et al., 2020, and references therein). Meanwhile, for

the strongly convex case, as in previous works (Akhavan et al., 2020; Bach and Perchet,

2016; Novitskii and Gasnikov, 2021), we additionally treat the constrained optimization. In this

section we only sketch our results in the case Θ = Rd.

Rate of convergence under only smoothness assumption. Assume that f is β-Hölder

with Lipschitz continuous gradient. Then, after 2T Oracle queries both considered algorithms

provide a point xS satisfying

E
[
∥∇f(xS)∥2

]
≲

(
d2

T

) β−1
2β−1

under the assumption that T ≥ d
1
β ,

where S is a random variable with values in {1, · · · , T}, and ≲ conceals the multiplicative

constants that do not depend on T and d. To the best of our knowledge, this result is the first

convergence guarantee for the zero order stochastic optimization under the considered noise

model. Balasubramanian and Ghadimi (2021); Ghadimi and Lan (2013) consider zero-order

optimization of non-convex objective function with Lipschitz gradient. They allow querying

two function values with identical noises, effectively reducing the convergence analysis to the

non-stochastic case. Carmon et al. (2017) study deterministic optimization of highly smooth

functions assuming that the higher order derivatives are observed, and Arjevani et al. (2022)
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consider stochastic optimization with first order Oracle. Thus, a direct comparison of our

results with theirs is not possible.

Rate of convergence under smoothness and Polyak-Łojasiewicz assumptions. Assume

that f is β-Hölder with Lipschitz continuous gradient and satisfies α-Polyak-Łojasiewicz in-

equality. Then, after 2T Oracle queries, both considered algorithms provide a point xT for

which the expected optimization error is upper bounded as

E[f(xT )− f⋆] ≲
d

αT
+

1

α ∧ α2

(
d2

T

)β−1
β

under the assumption that T ≥ d2−
β
2 ,

where ≲ conceals the multiplicative constants that do not depend on T , d and α. The Polyak-

Łojasiewicz assumption, was considered in the context of first order optimization by Polyak

(1963), who derived linear convergence of the gradient descent algorithm. Years later, this

condition received attention in the machine learning and optimization community following the

work of Karimi et al. (2016). To the best of our knowledge, zero-order optimization under the

considered noise model with the Polyak-Łojasiewicz assumption has not previously studied.

Very recently Rando et al. (2022) studied a related problem under the Polyak-Łojasiewicz

assumption. Unlike our work, they deploy a per-coordinate (random) gradient estimator in the

spirit of Akhavan et al. (2021), treat α as constant, and do not consider high-order smoothness.

Rate of convergence under smoothness and strong convexity. Assume that f is β-

Hölder with Lipschitz continuous gradient and satisfies α-strong convexity. Then, after 2T

Oracle queries, both considered algorithms provide a point xT such that

E[f(xT )− f⋆] ≲
d

αT
+

1

α

(
d2

T

)β−1
β

under the assumption that T ≥ d2−
β
2 ,

where ≲ conceals the multiplicative constants that do not depend on T , d and α. The closest

result to ours is that Akhavan et al. (2020) who split the proof into two cases: β = 2 (Lip-

schitz continuous gradient) and β > 2 (higher order smoothness). In the former case, they

obtain optimal dependency (linear in d) on the dimension, while in the latter case they get d2.

Later, Novitskii and Gasnikov (2021) and Akhavan et al. (2021), for the case β > 2, improved

this dependency to d2−1/β, which still does not match with the linear dependency for β = 2.

In contrast, we provide a unified analysis leading to d(2β − 2)/β dependency for any β ≥ 2; the

improvement is both in the rate and in the proof technique.

Notation

Throughout the paper, we use the following notation. For any k ∈ N we denote by [k], the set

of first k positive integers. For any x ∈ Rd we denote by x 7→ sign(x) the component-wise sign
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function (defined at 0 as 1). We let ⟨·, ·⟩ and ∥ · ∥ be the standard inner product and Euclidean

norm on Rd, respectively. For every close convex set Θ ⊂ Rd and x ∈ Rd we denote by

ProjΘ(x) = argmin{∥z−x∥ : z ∈ Θ} the Euclidean projection of x onto Θ. For any p ∈ [1,+∞]

we let ∥·∥p be the ℓp-norm in Rd and introduce the open ℓp-ball and ℓp-sphere respectively as

Bd
p ≜

{
x ∈ Rd : ∥x∥p < 1

}
and ∂Bd

p ≜
{

x ∈ Rd : ∥x∥p = 1
}

.

For any β ≥ 2 we let ⌊β⌋ the largest integer which is strictly less than β. Given multi-index

m = (m1, . . . ,md) ∈ Nd, we set m! ≜ m1! · · ·md!, |m| ≜ m1 + · · ·+md.

Structure of the paper

The paper, is organized as following. In Section 5.2, we recall some preliminaries and in-

troduce the classes of functions considered throughout. In Section 5.3, we presents the two

algorithms that are studied in the paper. In Section 5.4, we present the upper bounds for both

algorithms, and in each of the considered function classes. In Section 5.5, we establish mini-

max lower bounds for the zero-order optimization problem. Finally in Section 5.6, we discuss

our results and compare them to previous related work. The proof of most of the results are

presented in Section 5.7.

5.2 Preliminaries

For any multi-index m ∈ Nd, any |m|-times continuous differentiable function f : Rd → R, and

every h = (h1, . . . , hd)
⊤ ∈ Rd we define

Dmf(x) ≜
∂|m|f(x)

∂m1x1 · · · ∂mdxd
, hm ≜ hm1

1 · · ·hmd
d .

For any k-linear form A :
(
Rd
)k → R define its norm as

∥A∥ ≜ sup {|A[h1, . . . ,hk]| : ∥hj∥ ≤ 1, j ∈ [k]} .

Whenever h1 = . . . = hk = h we write A[h]k to denote A[h, . . . ,h]. Given a k-times contin-

uously differentiable function f : Rd → R and x ∈ Rd we denote by f (k)(x) :
(
Rd
)k → R the

following k-linear form

f (k)(x)[h1, . . . ,hk] =
∑

|m1|=···=|mk|=1

Dm1+···+mkf(x)hm1
1 · · ·hmk

k , ∀h1, . . . ,hk ∈ Rd ,

where m1, . . . ,mk ∈ Nd. We note that since f is k-times continuously differentiable in Rd,

then f (k)(x) is symmetric for all x ∈ Rd.
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Classes of functions

We start this section by stating all the relevant definitions and assumptions related to the

target function f . Following (Nemirovski, 2000, Section 1.3) we recall the definition of high

order Hölder smoothness, which was also considered by Bach and Perchet (2016).

Definition 5.2.1 (Higher order smoothness). Fix some β ≥ 2 and L > 0. Denote by Fβ(L) the

set of all functions f : Rd → R that are ℓ = ⌊β⌋ times continuously differentiable and satisfy,

for all x, z ∈ Rd the Hölder-type condition∥∥∥f (ℓ)(x)− f (ℓ)(z)
∥∥∥ ≤ L ∥x − z∥β−ℓ .

Remark 5.2.2 (On the definition of the class). Akhavan et al. (2020) consider a slightly different

definition of higher order smoothness. Namely, they consider a class F ′
β(L

′) defined as ℓ-times

continuously differentiable functions f satisfying for all x, z ∈ Rd

|f(x)− T ℓ
z (x)| ≤ L′ ∥x − z∥β ,

where T ℓ
z (·) is the Taylor polynomial of order ℓ of f around z. In Section 5.7 we show that if

f ∈ Fβ(L), then f ∈ F ′
β(L/ℓ!). That is to say, the functional class considered by Akhavan et al.

(2020) is not smaller. Note however that if f is convex and β = 2, then our class coincides

with that of Akhavan et al. (2020)—the class of functions with Lipschitz continuous gradient.

Since we study the minimization of highly smooth functions, in what follows, we will always

assume that f belongs to Fβ(L) for some β ≥ 2 and L > 0. We additionally require that the

function f ∈ F2(L̄) for some L̄ > 0, that is, its gradient is Lipschitz continuous.

Assumption 5.2.3. The function f ∈ Fβ(L) ∩ F2(L̄) for some β ≥ 2 and L, L̄ > 0.

We will start our analysis by providing rates of convergence to a stationary point of f under

Assumption 5.2.3. The first additional assumption that we consider is the Polyak-Łojasiewicz

condition, which we refer to as α-gradient dominance. This condition became rather popular

since it leads to linear convergence of the gradient descent algorithm, without convexity (see,

e.g., Karimi et al., 2016; Polyak, 1963).

Definition 5.2.4 (α-gradient dominance). Let α > 0. Function f : Rd → R is called α-gradient

dominant on Rd, if f is differentiable on Rd and satisfies Polyak-Łojasiewicz inequality,

2α(f(x)− f⋆) ≤ ∥∇f(x)∥2 , ∀x ∈ Rd .

Finally, we consider the second additional condition, which is the α-strong convexity.

Definition 5.2.5 (α-strong convexity). Let α > 0. Function f : Rd → R is called α-strongly

convex on Rd, if it is differentiable on Rd and satisfies

f(x) ≥ f(x′) +
〈
∇f(x′) ,x − x′〉+ α

2

∥∥x − x′∥∥2 , ∀x,x′ ∈ Rd .
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Under this condition and Assumption 5.2.3, we are in the framework previously considered

in Akhavan et al. (2020); Bach and Perchet (2016); Novitskii and Gasnikov (2021); Polyak and

Tsybakov (1990). We will provide bounds improving upon these results.

Note that an important example of family of functions satisfying the α-dominance condition

is given by composing strongly convex functions with a linear transformation. Let n ∈ N,

A ∈ Rn×d and define

F(A) =
{
f : f(x) = g(Ax), g is α-strongly convex

}
.

Note that if A⊤A is not invertible then the functions in F(A) are not necessarily strongly con-

vex. However, it can be shown that any f ∈ F(A) is an αγ-gradient dominant function, where

γ is the smallest non-zero singular value of A (see, e.g., Karimi et al., 2016). Alternatively, we

can consider the following family of functions

F ′(A) =
{
f : f(x) = g(Ax), g ∈ C2(Rd), g strictly convex

}
,

which is a set of α-gradient dominant functions on any compact subset of Rd, for some α > 0.

A popular example of such a function, appearing in machine learning applications, is the

logistic loss, defined as g(Ax) =
∑m

i=1 log(1+exp(a⊤i x)), where for 1 ≤ i ≤ n, ai is i-th row of

A, and x ∈ Rd. For this and more examples, see e.g. (Garrigos et al., 2022) and references

therein.

In what follows we will consider three different scenarios: i) the case of only smoothness

assumption on f ii) additional α-gradient dominance iii) additional α-strong convexity. Let x̂
be an output of any algorithm. For the first scenario we study stationary point guarantee

and bound for E ∥∇f(x̂)∥2. For the second and the third we will consider optimization error:

E[f(x̂) − f⋆]. Note that under strong convexity (as long as ∇f(x∗) = 0) as well as under

α-dominance gradient (see, e.g., Karimi et al., 2016, Appendix A.), for any x ∈ Rd

f(x)− f⋆ ≥ α

2

∥∥x − x∗
p

∥∥2 ,

where x∗
p is the Euclidean projection of x onto the set argminx∈Rd f(x)—solution set of the

considered optimization problem—which is a singleton in case of strong convexity. Thus, for

the last two scenarios, our upper bounds on E[f(x̂)− f⋆] imply immediately upper bounds for∥∥x − x∗
p

∥∥2 multiplying the former by 2/α.

5.3 Algorithms

Given a closed and convex set Θ ⊆ Rd, we consider the following optimization scheme

x1 ∈ Θ and xt+1 = ProjΘ(xt − ηtgt) t ≥ 1 , (5.1)
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where gt is an update direction, approximating the gradient direction ∇f(xt) and ηt > 0 is a

step-size. Allowing one to perform two function evaluations per step, we consider two gradient

estimators gt which are based on different randomization schemes. They both employ a

smoothing kernel K : [−1, 1] → R which we assume to satisfy, for β ≥ 2 and ℓ = ⌊β⌋, the

conditions∫
K(r) dr=0,

∫
rK(r) dr=1,

∫
rjK(r) dr=0, j=2, . . . , ℓ, κβ≜

∫
|r|β|K(r)| dr <∞ .

In (Polyak and Tsybakov, 1990) it was suggested to construct such kernels employing Legen-

dre polynomials, in which case κβ ≤ 2
√
2β, cf. Bach and Perchet, 2016, Appendix A.3.

We are now in a position to introduce the two estimators. Similarly to earlier works on

zero-order stochastic optimization (see e.g., Akhavan et al., 2022a; Bach and Perchet, 2016;

Flaxman et al., 2005; Nemirovsky and Yudin, 1983; Novitskii and Gasnikov, 2021) we use

gradient estimators based on a result, which is sometimes referred to as Stokes’ theorem. A

general form of this result can be found in Akhavan et al., 2022a, Appendix A.

Gradient estimator based on ℓ2-randomization. At time t ≥ 1, let ζ◦t be distributed uni-

formly on ∂Bd
2 , rt uniformly distributed on [−1, 1], and ht > 0. Query two points:

yt = f(xt + htrtζ
◦
t ) + ξt and y′t = f(xt − htrtζ

◦
t ) + ξ′t .

Using the above feedback, define the gradient estimate as

(ℓ2-randomization) g◦
t ≜

d

2ht
(yt − y′t)ζ

◦
tK(rt) . (5.2)

We use the superscript ◦ to emphasize the fact that g◦
t is based on the ℓ2-randomization.

Gradient estimator based on ℓ1-randomization. At time t ≥ 1, let ζ⋄t be distributed uni-

formly on ∂Bd
1 , rt uniformly distributed on [−1, 1], and ht > 0. Query two points:

yt = f(xt + htrtζ
⋄
t ) + ξt and y′t = f(xt − htrtζ

⋄
t ) + ξ′t .

Using the above feedback, define the gradient estimate as

(ℓ1-randomization) g⋄
t ≜

d

2ht
(yt − y′t) sign(ζ

⋄
t )K(rt) . (5.3)

Similarly to the previous algorithm, we use the superscript ⋄ to emphasize the fact that g⋄
t

is based on the ℓ1-randomization. We refer to Akhavan et al. (2022a) who highlighted the

potential computational and memory gains of this gradient estimator. A related estimator

was previously studied by Gasnikov et al. (2016). Their analysis is not sufficiently refined to

establish any advantage of the ℓ1-randomization.
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We impose the assumption used by Akhavan et al. (2020) over the random variables that

we generate in the estimators (5.2) and (5.3), which intuitively forces the Oracle to select noise

variables before observing the current query points.

Assumption 5.3.1. For all t ∈ {1, . . . , T}, it holds that:

(i) the random variables ξt and ξ′t are independent from ζ◦t (resp. ζ⋄t ) and from rt condition-

ally on xt, and the random variables ζ◦t (resp. ζ⋄t ) and rt are independent;

(ii) E[ξ2t ] ≤ σ2 and E[(ξ′t)
2] ≤ σ2, where σ ≥ 0.

Note that we do not assume ξt and ξ′t to have zero mean. Moreover, they can be non-

random and no independence between noises on different time steps is required, so that the

setting can be considered as almost adversarial. In particular, the first part of the assump-

tion does not permit a completely adversarial setup—the Oracle is not allowed to choose the

noise variable depending on the current query points (i.e. the two perturbations of xt). How-

ever, Assumption 5.3.1 encompasses the following protocol: before running the algorithm, the

Oracle fixes an arbitrary bounded (by σ) sequence (ξt, ξ
′
t)
T
t=1 of “noise” pairs, possibly with full

knowledge of the algorithm employed by the statistician, and reveals this sequence query by

query.

In the next two subsections we study the bias and variance of the two estimators. As

we shall see, ℓ1-randomization can be more advantageous in the noiseless case than its ℓ2-

counterpart (cf. Remark 5.3.6).

Bias and variance of ℓ2-randomization

The next results allows us to control the bias and the second moment of gradient estimators

g◦
1, . . . ,g

◦
T , and play a crucial role in our analysis.

Lemma 5.3.2 (Bias of ℓ2-randomization). Let Assumption 5.3.1 be fulfilled. Suppose that

f ∈ Fβ(L) for some β ≥ 2 and L > 0. Let xt and g◦
t be defined in (5.2) at time t ≥ 1. Let

ℓ = ⌊β⌋. Then,

∥E[g◦
t | xt]−∇f(xt)∥ ≤ κβ

L

(ℓ− 1)!
· d

d+ β − 1
hβ−1
t .

Intuitively, the smaller ht is, the more accurately gt estimates the gradient. Lemma 5.3.2

was claimed in (Bach and Perchet, 2016, second inequality of Lemma 2) but the proof was

not provided. The proof of Lemma 5.3.2, presented in Section 5.7, relies on the fact that g◦
t is

an unbiased estimator of some surrogate function, which is strongly related to the original f .

It should be noted that for β > 2 the bounds on the bias derived by Akhavan et al. (2020) and

by Novitskii and Gasnikov (2021), who obtained d and
√
d dependency respectively, cannot be

directly compared to our result. This is due to our Remark 5.2.2, which emphasizes that both

of the aforementioned groups of authors work under a slightly different notion of smoothness.
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Nevertheless, if f is convex and β = 2 our result improves upon those in (Akhavan et al., 2020)

and (Novitskii and Gasnikov, 2021) by factors of d and
√
d respectively, since both smoothness

classes coincide.

The next lemma emphasizes the trade-off between the bias and the variance term which

does not permit taking ht arbitrary small.

Lemma 5.3.3 (Variance of ℓ2-randomization). If Assumption 5.3.1 holds true, f ∈F2(L̄) and

d ≥ 2, then

E∥g◦
t ∥2 ≤

d2κ

d− 1
E
[(
∥∇f(xt)∥+ L̄ht

)2]
+
d2σ2κ

h2t
,

where κ =
∫ 1
−1K

2(r) dr.

The result of Lemma 5.3.3 can be further simplified as

E∥g◦
t ∥2 ≤ 4dκE ∥∇f(xt)∥2 + 4dκL̄2h2t +

d2σ2κ

h2t
, d ≥ 2 .

Let us provide some remarks about this result. First, the leading term of order d2h−2
t in the

above bound is the same as in (Akhavan et al., 2020, Lemma 2.4) and in (Bach and Perchet,

2016, Appendix C1, beginning of the proof of Proposition 3), but we obtain a better constant.

The main improvement w.r.t. to both works lies in the lower order term, unlike the aforemen-

tioned references, the term h2t is multiplied by d instead of d2. On the first sight mild, this

improvement is crucial for our guarantees and, in particular, for the condition T ≥ d2−β/2 (we

would have had T ≥ d3 with the previously known versions of the variance bounds (Akha-

van et al., 2020; Bach and Perchet, 2016). The proof relies on the Poincaré inequality for

the uniform distribution on ∂Bd
2 , which was exploited by Akhavan et al. (2022a) for the ℓ1-

randomization.

Proof of Lemma 5.3.3. For simplicity we drop the subscript t from all the quantities. By As-

sumption 5.3.1

E∥g◦∥2 = d2

4h2
E
[(
f(x + hrζ◦)− f(x − hrζ◦) + (ξ − ξ′)

)2
K2(r)

]
≤ d2

4h2
(
E
[
(f(x + hrζ◦)− f(x − hrζ◦)2K2(r)

]
+ 4κσ2

)
.

(5.4)

In what follows, all appearing expectations should be understood conditionally on xt. Note

that since E[f(x + hrζ◦)−f(x − hrζ◦) | r]=0 and f ∈ F2(L̄), then using Wirtinger-Poincaré

inequality (see, e.g., Beckner, 1989; Osserman, 1978, Eq. (3.1) or Theorem 2, respectively)

we deduce

E
[
(f(x+hrζ◦)−f(x−hrζ◦))2

∣∣ r] ≤ h2

d−1
E
[
∥∇f(x+hrζ◦)+∇f(x−hrζ◦)∥2

∣∣ r] . (5.5)
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Since f ∈ F2(L̄), then the triangle inequality further implies that

E
[
∥∇f(x + hrζ◦) +∇f(x − hrζ◦)∥2

∣∣ r] ≤ 4
(
∥∇f(x)∥+ L̄h

)2
. (5.6)

We conclude by plugging the above bound into Eq. (5.5) and taking into account Eq. (5.4).

Note that Eq. (5.6) combined with Eq. (5.5) can bee seen as a version of (Shamir, 2017,

Lemma 9), who relied on a concentration argument and obtained non-explicit constants. In-

deed, Lemma 9 of Shamir (2017), is implied by Eqs. (5.5)–(5.6).

Bias and variance of ℓ1-randomization

This section analyses the gradient estimate based on the ℓ1-randomization. The results below

display a very different bias and variance behavior compared to the ℓ2-randomization.

Lemma 5.3.4 (Bias of ℓ1-randomization). Let Assumption 5.3.1 be fulfilled. Suppose that

f ∈ Fβ(L) for some β ≥ 2 and L > 0. Let xt and g⋄
t be defined in (5.3) at time t ≥ 1. Let

ℓ = ⌊β⌋. Then,

∥E[g⋄
t | xt]−∇f(xt)∥ ≤ Lκβh

β−1
t ℓβ−ℓd

1−β
2 .

We emphasize that both Lemma 5.3.4 and Lemma 5.3.2 give identical dependency on

the discretization parameter ht. However, note that unlike the bias bound derived for the ℓ2

case, which was dimension independent, the result of Lemma 5.3.4 actually depends on the

dimension in a favourable way. In particular, the bias is controlled by a decreasing function of

the ambient dimension and this dependency becomes more and more favorable for smoother

functions. Yet, the price for such a favorable control of bias is an inflated bound on the vari-

ance, which is established below.

Lemma 5.3.5 (Variance of ℓ1-randomization). Let Assumption 5.3.1 be fulfilled. Assume that

f ∈ F2(L̄) and d ≥ 3, then

E∥g⋄
t ∥2 ≤

C̄d,1d
2κ

d− 2
E ∥∇f(xt)∥2 +

C̄d,2d
2κL̄2h2t

(d− 2)(d+ 1)
+
d3σ2κ

h2t
,

where C̄d,1 ≤ 8
(
1 +

√
2d
d+1

)2
and C̄d,2 = 16

(
3 +

√
8 + 592

(d+3)2
+ 22

d

)
.

Let us first discuss the constants C̄d,1 and C̄d,2. First of all, it is important to observe

that both C̄d,1 and C̄d,2 can be computed in practice as they only depend on the dimension.

This fact is important for the eventual choice of ηt and ht for the estimator (5.3) . Note that,

asymptotically we have

lim
d→∞

C̄d,1 = 8(1 +
√
2)2 ≤ 46.63 and lim

d→∞
C̄d,2 = 16(3 +

√
8) ≤ 93.26 .
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Furthermore, C̄d,1 is increasing (hence, remains upper-bounded by 8(1+
√
2)2) with the growth

of d. Meanwhile, C̄d,2 decreases with the growth of d, which implies that for all d ≥ 3 it holds

that C̄d,2 ≤ C̄3,2 ≤ 244.5. Hence, both C̄d,1 and C̄d,2 are of constant order. In view of the above

and combined with the fact that a− 2 ≥ a/3 for all a ≥ 3, the inequality of Lemma 5.3.5 can

be further simplified as

E∥g⋄
t ∥2 ≤ dκA1E ∥∇f(xt)∥2 + κL̄2A2h

2
t +

d3σ2κ

h2t
, d ≥ 3 , (5.7)

with A1 = 139.9, A2 = 733.5. Yet, since both C̄d,1 and C̄d,2 are known explicitly, they can be

implemented in practice and used directly for the choice of the discretization ht and the step-

size ηt. For this reason, we keep the derived bound on the variance as is and do not rely on

its simplified version from Eq. (5.7).

Modulo such absolute constants, the leading term w.r.t. ht in Lemma 5.3.5 is the same as

for ℓ2-randomization in Lemma 5.3.3. However, for the ℓ2-randomization this term (in ht) in-

volves only a quadratic dependency on the dimension d, while in the case of ℓ1 randomization

this dependency is cubic. Interestingly, the constant in front of the negligible term h2t does

not grow with the growth of dimension. In contrast, the corresponding term in Lemma 5.3.3

involves linear dependency on the dimension. We summarize these observations in the fol-

lowing remark which considers the noiseless case.

Proof of Lemma 5.3.5. For simplicity we drop subscript index t from all the quantities. Simi-

larly to the proof of Lemma 5.3.3, using Assumption 5.3.1, we deduce that

E∥g⋄∥2 ≤ d3

4h2
(
E[(f(x + hrζ⋄)− f(x − hrζ⋄))2K2(r)] + 4σ2κ

)
. (5.8)

Consider G : Rd → R defined for all u ∈ Rd as G(u) = f(x + hru) − f(x − hru). Using the

fact that f ∈ F2(L̄) we obtain for all u ∈ Rd

∥∇G(u)∥2 ≤ 8h4L̄2 ∥u∥2 + 8h2 ∥∇f(x)∥2 .

In what follows, all the expectations appearing should be understood conditionally on xt. Ap-

plying (Akhavan et al., 2022a, Lemma 3) to the function G defined above, we deduce that

E
[
(G(ζ⋄))2 | r

]
≤ 32h2

d(d− 2)
E
[(
h2L̄2 ∥ζ⋄∥2+ ∥∇f(x)∥2

)
(1 +

√
d ∥ζ⋄∥)2

]
.

Lemma 5.7.7, provided in Section 5.7, gives upper bounds on the expectations appearing in

the above inequality for all d ≥ 3 and its application yields

E
[(
f(x + hrζ⋄)− f(x − hrζ⋄)

)2 | r] ≤ Cd,1h
2

d(d− 2)
∥∇f(x)∥2 +

Cd,2L̄
2h4

d(d− 2)(d+ 1)
,
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where Cd,1 = 32
(
1 +

√
2d
d+1

)2
and Cd,2 = 64

(
3 +

√
8 + 592

(d+3)2
+ 22

d

)
. We conclude by substi-

tuting the above bound into the r.h.s. of Eq. (5.8).

Remark 5.3.6 (On the advantage of ℓ1-randomization). In the noiseless case (σ = 0) both

bias and variance of the ℓ1-randomization are strictly smaller than that of ℓ2-randomization.

Indeed, if σ = 0∥E[g◦
t | xt]−∇f(xt)∥ ≲ hβ−1

t

E∥g◦
t ∥2 ≲ dE ∥∇f(xt)∥2 + dh2t

and

∥E[g⋄
t | xt]−∇f(xt)∥ ≲

(
ht√
d

)β−1

E∥g⋄
t ∥2 ≲ dE ∥∇f(xt)∥2 + h2t

,

where ≲ hides multiplicative constants that do not depend on ht and d. As a thought experi-

ment, substitute d = 106 and β = 2.

5.4 Upper bounds

In this section, we present the convergence guarantees for the two considered gradient esti-

mators for various classes of objective functions f . Each of the following subsections is struc-

tured similarly: first, we define the choice of ηt and ht involved in both algorithms, and then,

for each class of the objective functions, we state the corresponding convergence guarantees.

In Section 5.4 we consider the case that f has higher order derivatives, f ∈ F2(L̄)∩Fβ(L)

for β ≥ 2, and establish the guarantee for the stationary point. In Section 5.4 we additionally

assume that f is α-gradient dominant and provide guarantees on the optimization error. In

Section 5.4 we analyze the case of strongly convex target function (both constrained and un-

constrained cases), improving the upper bound derived by Akhavan et al. (2020) and Novitskii

and Gasnikov (2021). Unless stated otherwise, the convergence guarantees presented in this

section hold under the assumption that the number of queries T is known before running the

algorithms.

Only smoothness assumptions

In this part we only assume that the objective function f : Rd → R satisfies Assumption 5.2.3.

In particular, since there is no guarantee of the unicity (or existence) of the minimizer, our goal

is modest—we only want to obtain a nearly stationary point.

The guarantee of this section will be stated on a randomly sampled point along the trajec-

tory. The distribution on the trajectory is chosen carefully, to guarantee the desired conver-

gence. The distribution that we are going to eventually use is defined in the following lemma.

Lemma 5.4.1. Consider the iterative algorithm defined in Eq. (5.1) with Θ = Rd. Assume that

there exist two positive sequences bt, vt : N → [0,∞) and m ≥ 0 such that for all t ≥ 1 it holds

134



almost surely that

∥E[gt | xt]−∇f(xt)∥ ≤ bt and E ∥gt∥
2 ≤ vt +mE ∥∇f(xt)∥2 .

Assume that ηt in Eq. (5.1) is chosen to satisfy L̄ηtm < 1 and that f⋆ > −∞. Let S be a

random variable with values in [T ], which is independent from x1, . . . ,xT ,g1, . . . ,gT and such

that

P(S = t) =
ηt
(
1− L̄ηtm

)∑T
t=1 ηt

(
1− L̄ηtm

) .

Then, it holds that

E ∥∇f(xS)∥2 ≤
2(E[f(x1)]− f⋆) +

∑T
t=1 ηt

(
b2t + L̄ηtvt

)∑T
t=1 ηt

(
1− L̄ηtm

) .

The above lemma, as well as its proof, is similar to the techniques used by Ghadimi

and Lan (2013) in the context of zero-order non-convex optimization. However, in the work

of Ghadimi and Lan (2013) the noise model is different—for them, both bt and vt decrease

when the discretization parameter ht (µ in their notation) decreases. Note that the distribution

of S in Lemma 5.4.1 depends on our choice of ηt andm. In the following result, we are going to

specify the exact values of ηt. Meanwhile, the value of m is obtained either from Lemma 5.3.3

or from Lemma 5.3.5, depending on the choice of the algorithm.

The next result, as with all other results of this section, requires a definition of algorithm-

dependent parameters, which are needed as an input to our algorithms

(y, h) =


(

1
8κL̄

, d
1

2β−1

)
for ℓ2-randomization(

d−2
2L̄C̄d,1d

, d
2β+1
4β−2

)
for ℓ1-randomization

. (5.9)

We recall that C̄d,1 is the constant which appears and is explicitly defined in Lemma 5.3.5.

Theorem 5.4.2. Let Assumptions 5.2.3 and 5.3.1 hold, for β ≥ 2. Consider gradient estima-

tors (5.2), (5.3) used in (5.1), with parameterization ηt and ht defined for t = 1, . . . , T as

ηt = min

(
y

d
, d

− 2(β−1)
2β−1 T

− β
2β−1

)
and ht = h · T− 1

2(2β−1) .

where the pair of constants (y, h) is defined in Eq. (5.9) depending on the algorithm. Assume

that Θ = Rd, x1 is deterministic, and T ≥ d
1
β , then for xS defined in Lemma 5.4.1 we have

E ∥∇f(xS)∥2 ≤
(
A1(f(x1)− f⋆) + A2

)
·
(
d2

T

) β−1
2β−1

,

where the constants A1,A2 > 0 depend only on σ, L, L̄, β, and the choice of the algorithm.
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Smoothness and α-gradient dominance

b V1 V2 V3

ℓ2-randomization
κβ

(ℓ−1)! ·
d

d+β−1 4dκ 4dκ d2κ

ℓ1-randomization κβℓ
β−ℓd

1−β
2 139.9dκ 733.5κ d3κ

Table 5.1: Bias and variance of both gradient estimators to be used in Theorems 5.4.4
and 5.4.6.

In the context of deterministic first-order optimization, the α-gradient dominance allows to

obtain rates of convergence of gradient descent algorithm, which are similar to the case of

the strongly convex objective function with Lipschitz gradient (this rate is often called linear in

the optimization literature (see e.g., Karimi et al., 2016)). Hence, it is natural to expect that

in our context the α-gradient dominance leads to the same convergence rates as α-strong

convexity. We show in Theorem 5.4.4 that the rates are only inflated by a multiplicative factor

α−1 compared to the strongly convex case that will be discussed in the next section.

Assumption 5.4.3. Assume that the sequence of (gt)t≥1 used in Algorithm 5.1 satisfies

∥E[gt | xt]−∇f(xt)∥ ≤ bLhβ−1
t and E ∥gt∥

2 ≤ V1E ∥∇f(xt)∥2 + V2L̄
2h2t + V3σ

2h−2
t .

Note that Assumption 5.4.3 holds for gradient estimators (5.2), (5.3), with the values that

are indicated in Table 5.1, see Lemmas 5.3.2–5.3.5.

Theorem 5.4.4. Let f be an α-gradient dominant function and Assumptions 5.2.3 and 5.3.1

hold, for β ≥ 2. Consider an iterative procedure defined in Eq. (5.1) and assume that Assump-

tion 5.4.3 is satisfied. Set

ηt = min

(
1

2L̄V1
,
4

αt

)
and ht =

(
4L̄ · V3

b2

) 1
2β

·

t
− 1

2β if ηt = 4/αt

T
− 1

2β if ηt = 1/2L̄V1

.

Assume that Θ = Rd, and x1 is deterministic, then

E[f(xT )− f⋆] ≤ A1 ·
V1

αT
(f(x1)− f⋆) +

A2
α ∧ α2

(
V3

{
V3

b2

)− 1
β

+ V2

(
V3

b2

) 1
β

T
− 2

β

}
T
−β−1

β ,

where A1,A2 > 0 depend only on σ2, L, L̄, β.

The above theorem states a general result for any gradient estimator that satisfies As-

sumption 5.4.3. Given the values provided in Table 5.1, we can state the following corollary

for both considered estimators.

Corollary 5.4.5. Let f be an α-gradient dominant function and Assumptions 5.2.3 and 5.3.1

hold, for β ≥ 2. Consider gradient estimators (5.2), (5.3) used in (5.1), with parameterization

136



ηt and ht that are outlined in Theorem 5.4.4, where b,V1,V2,V3 are assigned based on Table

5.1 for each algorithm, respectively. Assume that Θ = Rd, x1 is deterministic, and T ≥ d2−
β
2 .

Then

E[f(xT )− f⋆] ≤ A1 ·
d

αT
(f(x1)− f⋆) +

A2
α ∧ α2

(
d2

T

)β−1
β

,

where A1,A2 > 0 depend only on σ2, L, L̄, β, and the choice of the algorithm.

Smoothness and strong convexity

In this section, we provide the guarantee on the average point x̄T along the trajectory of the

algorithm, that is,

x̄T =
1

T

T∑
t=1

xt .

Note that instead of taking the average along the trajectory one may simply sample uniformly

at random one point along the trajectory and our guarantees still hold. However, to avoid

additional randomness, we stick to the deterministic averaging.

Unconstrained optimization

In this part we consider the case of Θ = Rd and, as in the previous parts, we assume that T

is known beforehand. Similar to the previous section, first we state a general result that can

be applied to any gradient estimator that satisfies Assumption 5.4.3.

Theorem 5.4.6. Let f be an α-strongly convex function and Assumptions 5.2.3 and 5.3.1

hold, for β ≥ 2. Consider an iterative procedure defined in Eq. (5.1) and assume that Assump-

tion 5.4.3 is satisfied. Set

ηt = min

(
α

4L̄2V1
,
4

αt

)
and ht =

(
2V3

b2

) 1
2β

·

t
− 1

2β if ηt = 4/αt

T
− 1

2β if ηt = 1/2L̄V1

.

Assume that Θ = Rd, x1 is deterministic, then

E[f(x̄T )− f∗] ≤ A1
V1

αT
∥x1−x∗∥2 +

{
A2b

2
βV3

β−1
β + A3V2

(
V3

b2

) 1
β (

V1
− 2

β + T
− 2

β

)} T
−β−1

β

α
,

where the constants A1,A2,A3 > 0 depend only on σ, L, L̄, β.

Subsequently, in Corollary 5.4.7, we customize the above theorem for gradient estima-

tors (5.2) and (5.3), with assignments of ηt, ht that are again selected based on Table 5.1.
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Corollary 5.4.7. Let f be an α-strongly convex function and Assumptions 5.2.3 and 5.3.1

hold, for β ≥ 2. Consider gradient estimators (5.2), (5.3) used in (5.1), with parameterization

ηt and ht that are precised in Theorem 5.4.6, where b,V1,V2,V3 are set according to Table

5.1 for each algorithm, respectively. Assume that Θ = Rd, x1 is deterministic, and T ≥ d2−
β
2 .

Then

E[f(xT )− f⋆] ≤ A1 ·
d

αT
∥x1 − x⋆∥2 + A2

α

(
d2

T

)β−1
β

,

where A1,A2 > 0 depend only on σ2, L, L̄, β, and the choice of the algorithm.

With an slightly different notion of smoothness, (Akhavan et al., 2020, Theorem 3.2) de-

rived a similar result, that is comparable to Corollary 5.4.7. However, in the latter the authors

imposed an additional condition on α (i.e., α ≳
√
d/T ), which is necessary for their conver-

gence guarantee.

Constrained optimization

We now assume that Θ ⊂ Rd is a compact convex set. Consequently, since f is continuously

differentiable, its gradient is bounded on Θ. This fact allows us to develop any-time results,

that is, in the present part, we do not require the knowledge of the optimization horizon T . The

results of this section are essentially corollaries of the following general result.

Lemma 5.4.8. Let Θ ⊂ Rd be a compact convex set. Assume that f is α-strongly convex on

Θ and supx∈Θ ∥∇f(x)∥2 ≤ G. Consider the iterative algorithm in Eq. (5.1). Assume that there

exist two positive sequences bt, vt, : N → [0,∞) and m ∈ [0,∞) such that for all t ≥ 1 it holds

almost surely that

∥E[gt | xt]−∇f(xt)∥ ≤ bt and E ∥gt∥
2 ≤ vt +mE ∥∇f(xt)∥2 .

Then, for x̄T = 1
T

∑T
t=1 xt we have

E[f(x̄T )− f⋆] ≤ mG2 log(eT )

αT
+

1

αT

T∑
t=1

(vt
t
+ b2t

)
.

Using the bounds on the variance and bias derived in Section 5.3, we can deduce the

following two guarantees for gradient estimators (5.2), (5.3) used in (5.1), by analysing the

resulting recursive relations.

Theorem 5.4.9. Let f be an α-strongly convex function and Assumptions 5.2.3 and 5.3.1 hold,

for β ≥ 2. Consider gradient estimators (5.2), (5.3) used in (5.1), with parametrization ηt = 2
αt

and ht = h · t−1/2β, where the constant h equals to d
1
β for (5.2) and to d

2+β
2β for (5.3). Assume
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that Θ is a convex and closed subset of Rd, with supx∈Θ ∥∇f(x)∥2 ≤ G. Then,

E[f(x̄T )− f⋆] ≤ A1 ·
dG2 log(eT )

αT
+ A2 ·

1

α

(
d2

T

)β−1
β

+ A3 ·
d
1+ 2

β

αT
,

with A1,A2,A3 > 0 depend only on σ2, L, L̄, β and the choice of the algorithm.

The above result is nearly identical to Corollary 5.4.7—they only differ in the exact values of

constants A1,A2,A3. Theorem 5.4.9 should be compared to (Akhavan et al., 2020, Theorem

3.1 and Theorem 5.1) and with (Novitskii and Gasnikov, 2021, Theorem 1). However, we

again recall that both Akhavan et al. (2020); Novitskii and Gasnikov (2021) work with a slightly

different, compared to ours, notion of smoothness (both coincide in case β = 2, see our

Remark 5.2.2). The term d1+2/β

T , appearing in both results is negligible as long as T ≥ d4−β,

which, in the worst case of β = 2 means that T ≥ d2.

5.5 Lower bounds

In this section we prove a minimax lower bound on the optimization error over all sequential

strategies that allow the query points depend on the past. The established lower bound is

similar to that of Akhavan et al. (2020). However, we work with the Hellinger distance instead

of the Kullback–Leibler divergence, which allows us to encompass a larger family of noises.

For t = 1, . . . , T , we assume that yt = f(zt) + ξt and we consider strategies of choosing the

query points as zt = Φt(z1, y1, · · · , zt−1, yt−1, τ t) where Φt’s are Borel functions and z1 ∈ Rd

is any random variable, and {τ t} is a sequence of random variables in a measurable space

(Z,U), such that τ t is independent of (z1, y1, · · · , zt−1, yt−1). We denote by ΠT the set of all

such strategies. First, as mentioned above, we establish a generalization of (Akhavan et al.,

2020, Eq. (13))—a requirement of bounded Kullback–Leibler divergence, that we replace by

the Hellinger distance.

Lemma 5.5.1. For any f : Rd → R and any sequential strategy zt = Φt(z1, y1, . . . , yt−1, τ t)

with yt = f(zt) + ξt for t = 1, . . . , T , denote by Pf the joint distribution of ((zi, yi)Ti=1, (τ i)
T
i=1).

Assume that ξ1, . . . , ξT are i.i.d. with cumulative distribution function F : R → R satisfying∫ (√
dF (u)−

√
dF (u+ v)

)2
du ≤ I0v

2 , |v| ≤ v0 , (5.10)

for some 0 < I0 <∞, 0 < v0 ≤ ∞, and such that ξt is independent of (z1, y1, . . . , zt−1, yt−1, τ ).

Furthermore, assume that for all t = 1, . . . , T it holds that zt ∈ Θ ⊂ Rd, then for any f, f ′ :

Rd → R such that maxu∈Θ |f(u)− f ′(u)| ≤ B ≤ v0 it holds that

1

2
H2(Pf ,Pf ′) ≤ 1−

(
1− I0

2
B

)T

,
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where H2(·, ·) is the Hellinger distance, defined for two probability distributions P,P′ as

H2(P,P′) ≜
∫
(
√

dP−
√
dP′)2 .

Our construction of the lower bound relies heavily on Lemma 5.5.1. In particular, this

construction is built upon i.i.d. noise satisfying the condition in Eq. (5.10). The condition in

Eq. (5.10) is not restrictive—for example, for Gaussian distribution F it is satisfied with v0 =

∞. As it is noted by Akhavan et al. (2020), the class ΠT includes the sequential strategy of

Algorithm (5.1) with either of the considered estimators. Indeed, taking T as an even number,

and choosing zt = xt + htζtrt and zt = xt − htζtrt or even t and odd t, respectively.

Let us also explain the improvement upon (Akhavan et al., 2020, Eq. (13)), where a sim-

ilar bound is required for the Kullback–Leibler divergence instead of the Hellinger distance.

First, from purely quantitative point of view, any upper bound for the Kullback–Leibler diver-

gence implies an upper bound for the squared Hellinger distance, hence (Akhavan et al., 2020,

Eq. (13)) is a stronger condition in comparison with Eq. (5.10). More qualitatively, Eq. (5.10)

encompasses a larger family of noises satisfies. In particular, in order to use Kullback–Leibler

divergence between two distributions, we need one of them to be absolutely continuous with

respect to the other one, while the Hellinger distance does not require such a restricted con-

dition. As an example, one can consider F to be a bounded support distribution. Then, the

Kullback–Leibler divergence between F (·) and F (·+ v) is unbounded. However, the Hellinger

distance remains bounded and F can be used as the distribution of ξ1, . . . , ξT in the lower

bound.

Theorem 5.5.2. lowerB Let Θ = {x ∈ Rd : ∥x∥ ≤ 1}. For α,L > 0, β ≥ 2, let F ′
α,β denote

the set of functions f that attain their minimum over Rd in Θ and belong to Fα,β(L) ∩ {f :

maxx∈Θ ∥∇f(x)∥ ≤ G}, where G > 2α. Then for any strategy in the class ΠT we have

sup
f∈F ′

α,β

E
[
f(zT )− f⋆

]
≥ Cmin

(
max

(
α, T−1/2+1/β

)
,
d√
T
,
d

α
T
−β−1

β

)
, (5.11)

and

sup
f∈F ′

α,β

E ∥zT − x∗(f)∥2 ≥ Cmin

(
1,

d

T
1
β

,
d

α2
T
−β−1

β

)
, (5.12)

where C > 0 is a constant that does not depend of T, d, and α, and x∗(f) is the minimizer of

f on Θ.

For the family of α-strongly convex functions, all the discussions provided by Akhavan et al.

(2020) after their Theorem 6.1 are applicable to our case. Furthermore, since any α-strongly

convex function is α-gradient dominant, the outlined result in Eq. (5.11) is a valid lower bound

for the family of α-gradient dominant functions. This fact, highlights the minimax optimality of

our proposed algorithms (see Corollary 5.4.5), for α-gradient dominant functions, with respect

to T (and d, if β = 2).
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The following theorem is a simple and direct corollary of Theorem 5.5.2, which provides

an ad-hoc lower bound for the gradient of the family of smooth non-convex functions.

Theorem 5.5.3. Consider the class, for β ≥ 2, L > 0, L̄ > 0: F̃β(L, L̄) = {f ∈ Fβ(L), f is L̄-smooth}.
Let {zt}Tt=1 be any algorithm belonging to the same class of sequential strategies as Theorem

5.5.2. Let S be any random random variable taking values in {1, . . . , T}, independent of other

sources of randomness. Then, under the assumptions of Theorem 5.5.2 we have

sup
f∈F̃β(L,L̄)

E ∥∇f(zS)∥2 ≥ CdT
−β−1

β ,

where C > 0 does not depend on d, T , and β.

5.6 Discussion

We have provided an improved analysis of the algorithm of Bach and Perchet (2016) and

introduced a new algorithm based on the ℓ1-randomization. The new algorithm enjoys similar

guarantees as the previously known one. Note that each of the considered cases involves

different points along the trajectory: randomly sampled for the non-convex case; the last point

under the Polyak-Łojasiewicz condition; averaged for the strongly convex case. Hence, a

natural question for future research is: can we devise the same guarantees for the same

point (or randomized in the same way). Another promising direction for future works is a

numerical and theoretical justification of the benefits brought by the ℓ1-randomization, possibly,

relying on our Remark 5.3.6. Finally, the question of adaptivity for zero-order optimization with

adversarial noise setting remains largely open.

5.7 Proofs

In this section we first provide some auxiliary results and then prove the results stated in the

main body of the paper.

Additional notation Let W 1,W 2 be two random variables, we write W 1
d
= W 2 to denote

their equality in distribution. We also denote by Γ : R+ → R+ the gamma function defined, for

every z > 0, as Γ(z) =
∫∞
0 xz−1 exp(−x) dx.

Consequences of smoothness assumption

Let us first provide some immediate consequences of the smoothness assumption that we

consider.
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Remark 5.7.1. For all k ∈ N \ {0} and all h ∈ Rd it holds that

f (k)(x)[h]k =
∑

|m1|=···=|mk|=1

Dm1+···+mkf(x)hm1+···+mk =
∑

|m|=k

k!

m!
Dmf(x)hm .

Proof. The first equality of the remark follows from the definition. For the second one it is

sufficient to show that for eachm = (m1, . . . ,md)
⊤ ∈ Nd with |m| = k there exist exactly k!/m!

distinct choices of (m1, . . . ,mk) ∈ (Nd)k with |m1| = . . . = |mk| = 1 and m1 + . . .+mk =m.

To see this, we map m ∈ Nd into a word containing letters from {a1, a2, . . . , ad} as

m 7→W (m) ≜ a1 . . . a1︸ ︷︷ ︸
m1−times

a2 . . . a2︸ ︷︷ ︸
m2−times

. . . ad . . . ad︸ ︷︷ ︸
md−times

.

By construction, each letter aj is repeated exactlymj-times inW (m). Furthermore, if |m| = k,

thenW (m) contains exactly k letters. From now on, fix an arbitrarym ∈ N with |m| = k. Given

(m1, . . . ,mk) ∈ (Nd)k such that |m1| = . . . = |mk| = 1 and m1 + . . .+mk =m, define1

(m1, . . . ,mk) 7→W (m1) +W (m2) + . . .+W (mk) .

We observe that the condition m1 + . . .+mk =m, implies that the word W (m1) +W (m2) +

. . .+W (mk) is a permutation of W (m). A standard combinatorial fact states that the number

of distinct permutations of W (m) is given by the multinomial coefficient, i.e., by k!/m!. Since

the mapping (m1, . . . ,mk) 7→W (m1)+W (m2)+ . . .+W (mk) is invertible, we conclude.

Lemma 5.7.2. Assume that f ∈ Fβ(L) for some β ≥ 2 and L > 0. Let v ∈ Rd with ∥v∥ = 1

and defined the function gv : Rd → R as gv(x) ≡ ⟨v ,∇f(x)⟩, x ∈ Rd. Then gv ∈ Fβ−1(L).

Proof. Set ℓ ≜ ⌊β⌋. Note that since f is ℓ times continuously differentiable, then gv is ℓ − 1

times continuously differentiable. Furthermore, for any h1, . . . ,hℓ−1 ∈ Rd

g
(ℓ−1)
v (x)[h1, . . . ,hℓ−1] =

∑
|m1|=...=|mℓ−1|=1

Dm1+...+mℓ−1gv(x)hm1
1 · . . . · hmℓ−1

ℓ−1

=
∑

|m1|=...=|mℓ|=1

Dm1+...+mℓf(x)hm1
1 · . . . · hmℓ−1

ℓ−1 vmℓ

= f (ℓ)(x)[h1, . . . ,hℓ−1,v] .

1The summation of words is defined as concatenation.
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Hence, for any x, z ∈ Rd we can write by definition of the norm of a ℓ−1-linear form∥∥∥g(ℓ−1)
v (x)− g

(ℓ−1)
v (z)

∥∥∥
= sup

{
|g(ℓ−1)

v (x)[h1, . . . ,hℓ−1]− g
(ℓ−1)
v (z)[h1, . . . ,hℓ−1]| : ∥hj∥ = 1 j ∈ [ℓ− 1]

}
= sup

{
|f (ℓ)(x)[h1, . . . ,hℓ−1,v]− f (ℓ)(z)[h1, . . . ,hℓ−1,v]| : ∥hj∥ = 1 j ∈ [ℓ− 1]

}
≤
∥∥∥f (ℓ)(x)− f (ℓ)(z)

∥∥∥ ≤ L∥x − z∥β−ℓ .

Lemma 5.7.3. Fix some real β ≥ 2 and assume that f ∈ Fβ(L). Then, for all x, z ∈ Rd

∣∣∣∣f(x)− ∑
0≤|m|≤ℓ

1

m!
Dmf(z)(x − z)m

∣∣∣∣ ≤ L

ℓ!
∥x − z∥β .

Proof. Fix some x, z ∈ Rd. By Taylor’s theorem there exists c ∈ (0, 1) such that

f(x) =
∑

0≤|m|≤ℓ−1

1

m!
Dmf(z)(x − z)m +

∑
|m|=ℓ

1

m!
Dmf(z + c(x − z))(x − z)m .

Thus, invoking Remark 5.7.1 and the fact that f ∈ Fβ(L), we can write∣∣∣∣f(x)− ∑
|m|≤ℓ

1

m!
Dmf(z)(x − z)m

∣∣∣∣ = |
∑
|m|=ℓ

1

m!
(Dmf(z + c(x − z))−Dmf(z)) (x − z)m|

=
1

ℓ!
|f (ℓ)(z + c(x − z))[x − z]ℓ − f (ℓ)(z)[x − z]ℓ|

≤ L

ℓ!
∥x − z∥ℓ ∥c(x − z)∥β−ℓ ≤ L

ℓ!
∥x − z∥β .

On biases and variances

ℓ2-randomization

In this subsection we study the bias and variance of ℓ2-randomization algorithm. It is split into

two parts, with the first one focused on the bias and the second one focused on the variance.

Control of the bias

Lemma 5.7.4. Let f : Rd → R be a continuously differentiable function. Let r,U◦, ζ◦ be

uniformly distributed on [−1, 1],Bd
2 , and ∂Bd

2 , respectively. Then, for any h > 0, we have

E[∇f(x + hrU◦)rK(r)] =
d

h
E[f(x + hrζ◦)ζ◦K(r)] .
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Proof. Fix r ∈ [−1, 1] \ {0}. Define ϕ : Rd → R as ϕ(u) = f(x + hru)K(r) and note that

∇ϕ(u) = hr∇f(x + hru)K(r). Hence, we have

E[∇f(x + hrU◦)K(r) | r] = 1

hr
E[∇ϕ(U◦) | r] = d

hr
E[ϕ(ζ◦)ζ◦ | r]

=
d

hr
K(r)E[f(x + hrζ◦)ζ◦ | r] ,

where the second equality is obtained from a version of Stokes’ theorem (see e.g., Zorich,

2016, Section 13.3.5, Exercise 14a). Multiplying by r from both sides, using the fact that r

follows continuous distribution, and taking total expectation concludes the proof.

Proof of Lemma 5.3.2. Using Lemma 5.7.4, the fact that
∫ 1
−1 rK(r) dr = 1, and the variational

representation of the Euclidiean norm, we can write

∥E[g◦
t | xt]−∇f(xt)∥ = sup

v∈∂Bd
2

E[
(
∇vf(x + htrtU

◦)−∇vf(x)
)
rtK(rt)] , (5.13)

where we recall that U◦ is uniformly distributed on Bd
2 . Lemma 5.7.2 asserts that for any

v ∈ ∂Bd
2 the directional gradient ∇vf(·) is (β − 1, L)-Hölder. Thus, thanks to Lemma 5.7.3,

the following Taylor’s expansion holds

∇vf(xt + htrtU
◦) = ∇vf(xt) +

∑
1≤|m|≤ℓ−1

(rtht)
|m|

m!
Dm∇vf(xt)(U

◦)m +R(htrtU
◦) , (5.14)

where the residual term R(·) satisfies |R(x)| ≤ L
(ℓ−1)! ∥x∥β−1.

Substituting Eq. (5.14) into Eq. (5.13) and using the “zeroing-out” properties of the kernel

K, we deduce that

∥E[g◦
t | xt]−∇f(xt)∥ ≤ κβh

β−1
t

L

(ℓ− 1)!
E ∥U◦∥β−1 = κβh

β−1
t

L

(ℓ− 1)!

d

d+ β − 1
,

where the last equality is obtained from the fact that E ∥U◦∥q = d
d+q , for any q ≥ 0.

ℓ1-randomization

In this subsection we study bias and variance of ℓ1-randomization algorithm.

Let ζ be a real valued random variable with E[ζ2] ≤ 4σ2 and ζ⋄ be distributed uniformly on

∂Bd
1 . Assume that both are independent from each other. In this section analyze the estimator

g⋄
x,h =

d

2h
(f(x + hrζ⋄)− f(x − hrζ⋄) + ζ) sign(ζ⋄)K(r) , (5.15)

which coincides with the estimator in (5.3) at time t = 1, . . . , T with ζ = ξt − ξ′t.
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Control of bias

Lemma 5.7.5. Let U⋄ be uniformly distributed on Bd
1 and ζ⋄ be uniformly distributed on ∂Bd

1 .

Fix some x ∈ Rd and h > 0, and let Assumption 5.3.1 be fulfilled, then the estimator in

Eq. (5.15) satisfies

E[g⋄
x,h] = E[∇f(x + hrU⋄)rK(r)] .

Proof. The proof is analogous to that of Lemma 5.7.4 using (Akhavan et al., 2022a, Theorem

6).

In order to control the bias of the estimator in Eq. (5.15), we need the following result,

which controls the moments of the Euclidean norm of U⋄.

Lemma 5.7.6. Let U⋄ ∈ Rd be distributed uniformly on Bd
1 , then for any β ≥ 2 it holds that

E ∥U⋄∥β ≤ d
β
2 Γ(β + 1)Γ(d+ 1)

Γ(d+ β + 1)
.

Proof. Let W = (W1, . . . ,Wd),Wd+1 be i.i.d. random variables following Laplace distribution

with mean 0 and scale parameter 1. Then, following (Barthe et al., 2005, Theorem 1) we have

U⋄ d
=

W

∥W ∥1 + |Wd+1|
,

where the above equality holds in distribution. Furthermore, (Barthe et al., 2005, Theorem 2)

(see also Rachev and Ruschendorf (1991); Schechtman and Zinn (1990)) states that

(W , |Wd+1|)
∥W ∥1 + |Wd+1|

and ∥W ∥1 + |Wd+1| ,

are independent. Hence, we can write that E ∥U⋄∥β equals to

E

( ∑d
j=1W

2
j

(∥W ∥1 + |Wd+1|)2

)β/2
 =

E ∥W ∥β

E ∥(W ,Wd+1)∥β1
, (5.16)

where the equality follows by the independence recalled above. Note that for any j = 1, . . . , d

it holds that |Wj | is exp(1) random variable. Thus, since β ≥ 2, we can write by Jensen’s

inequality

E ∥W ∥β = d
β
2E

1

d

d∑
j=1

W 2
j

β/2

≤ d
β
2
−1

d∑
j=1

E[W β
j ] = d

β
2E[W β

1 ] = d
β
2 Γ(β + 1) . (5.17)

It remains to provide a suitable expression (or lower bound) for E ∥(W ,Wd+1)∥β1 . We observe

that ∥(W ,Wd+1)∥1 follows Erlang distribution with parameters (d + 1, 1) (as a sum of d + 1

145



i.i.d. exp(1) random variables). Hence, recalling the expression for the density of the Erlang

distribution

E ∥(W ,Wd+1)∥β1 =
1

Γ(d+ 1)

∫ ∞

0
xd+β exp(−x) dx =

Γ(d+ β + 1)

Γ(d+ 1)
. (5.18)

Substituting Eqs. (5.17)–(5.18) into Eq. (5.16) we conclude.

We are in position to derive an upper bound on the bias of the gradient estimator in

Eq. (5.15).

Proof of Lemma 5.3.4. Invoking Lemma 5.7.5 and following the same lines as in the proof of

Lemma 5.3.2, we deduce that

∥E[g⋄
t | xt]−∇f(xt)∥ ≤ κβh

β−1
t

L

(ℓ− 1)!
E ∥U⋄∥β−1 ≤ κβh

β−1
t

L

(ℓ− 1)!

d
β−1
2 Γ(β)Γ(d+ 1)

Γ(d+ β)
,

where the last inequality is thanks to Lemma 5.7.6. Recall the following property of Gamma

function: for any z > 0 we have Γ(z + 1) = zΓ(z). Therefore, applying this property iteratively

and recalling the definition of ℓ, we deduce that

Γ(d+ 1)

Γ(d+ β)
=

Γ(d+ 1)

Γ
(
d+ (β − ℓ)︸ ︷︷ ︸

∈(0,1]

)∏ℓ
i=1

(
d+ β − i

) ≤ (d+ β − ℓ)1−(β−ℓ)∏ℓ
i=1

(
d+ β − i

) ≤ 1

dβ−1
,

where the first inequality is obtained from (Feng, 2010, Remark 2.1.1). Finally, for the term
Γ(β)
(ℓ−1)! , we proceed analogously and deduce that it is bounded by ℓβ−ℓ. Combining the last

three displays concludes the proof.

Control of variance

We now address how to control the variance of the ℓ1-randomized estimator.

Lemma 5.7.7. For all d ≥ 3 it holds that

E
[
(1+

√
d ∥ζ⋄∥)2

]
≤

(
1+

√
2d

d+1

)2

, E
[
(1+

√
d ∥ζ⋄∥)2 ∥ζ⋄∥2

]
≤ 2

d+1

(
3+

√
8+

592

(d+3)2
+
22

d

)
.

Proof. In what follows we will make use of the following expression for the moments of Dirichlet

distribution

E[(ζ⋄)m] =
Γ(d)

Γ(d+ |m|)

d∏
i=1

Γ(mi + 1) =
(d− 1)!m!

(d− 1 + |m|)!
, (5.19)

for any multi-index m = (m1, . . . ,md) ∈ Nd with even coordinates.
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First bound. The expression for second moments of Dirichlet distribution in Eq. (5.19) yields

E[(1 +
√
d ∥ζ⋄∥)2] ≤ 1 + 2

√
dE ∥ζ⋄∥2 + dE ∥ζ⋄∥2 ≤ 1 + 2

√
2d

d+ 1
+

2d

d+ 1
=

(
1 +

√
2d

d+ 1

)2

.

The proof of the first claimed bound is completed.

Second bound. We repeat similar argument for E[(1 +
√
d ∥ζ⋄∥)2 ∥ζ⋄∥2]. By Jensen’s in-

equality, it holds that

E[(1 +
√
d ∥ζ⋄∥)2 ∥ζ⋄∥2] ≤ E ∥ζ⋄∥2 + 2

√
dE ∥ζ⋄∥6 + dE ∥ζ⋄∥4 .

We already know that E ∥ζ⋄∥2 = 2/(d + 1) and it remains to evaluate E ∥ζ⋄∥6 and E ∥ζ⋄∥4.
Using multinomial identity and the expression for the moments in Eq. (5.19), we deduce

E ∥ζ⋄∥6 =
∑

|m|=3

6

m!
E[(ζ⋄)2m] =

∑
|m|=3

6

m!
· (d− 1)!(2m)!

(d+ 5)!
= 6

(d− 1)!

(d+ 5)!

∑
|m|=3

(2m)!

m!
,

and

E ∥ζ⋄∥4 =
∑

|m|=2

2

m!
E[(ζ⋄)2m] =

∑
|m|=3

2

m!
· (d− 1)!(2m)!

(d+ 3)!
= 2

(d− 1)!

(d+ 3)!

∑
|m|=2

(2m)!

m!
.

Direct calculations show that
∑

|m|=3
(2m)!
m! = 4

3d((d+3)2+74) and
∑

|m|=2
(2m)!
m! = 2d(d+11).

Thus, after some basic algebraic simplifications, we get the following expressions for all d ≥ 1

E ∥ζ⋄∥6 = 8d!(d+ 3)2

(d+ 5)!

(
1 +

74

(d+ 3)2

)
and E ∥ζ⋄∥4 = 4d!d

(d+ 3)!

(
1 +

11

d

)
.

Therefore, we have the following upper bound

E[(1 +
√
d ∥ζ⋄∥)2 ∥ζ⋄∥2] ≤ E[∥ζ⋄∥2] + 2

√
dE ∥ζ⋄∥6 + dE ∥ζ⋄∥4

=
2

d+ 1
+ 2

√
8d!d(d+ 3)2

(d+ 5)!

(
1 +

74

(d+ 3)2

)
+

4d!d2

(d+ 3)!

(
1 +

11

d

)

≤ 2

d+ 1
+ 2

√
8

(d+ 1)2

(
1 +

74

(d+ 3)2

)
+

4

d+ 1

(
1 +

11

d

)
The proof of the second claimed bound follows by rearranging the right-hand-side of the above

inequality.
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A technical lemma

In our proofs we will often need to deal with various recursive relations. In this section we pro-

vide a result, which are used extensively in nearly every single proof, it is a direct adaptations

of (Akhavan et al., 2020, Lemma D.1).

Lemma 5.7.8. Let {δt}t≥1 be a sequence of real numbers such that for all integers t > t0 ≥ 1,

δt+1 ≤
(
1− 2

t

)
δt +

N∑
i=1

ai
tpi+1

, (5.20)

where pi ∈ (0, 2) and ai ≥ 0 for i ∈ [N ]. Then for t ≥ t0 ≥ 3, we have

δt ≤
2(t0 − 1)δt0

t
+

N∑
i=1

ai
(2− pi)tpi

. (5.21)

Proof. For any fixed t > 0 the convexity of the mapping u 7→ g(u) = (t + u)−p implies that

g(1)− g(0) ≥ g′(0), i.e., 1
tp − 1

(t+1)p ≤ p
tp+1 . Thus, using the fact that 1

tp − p
tp+1 = (2−p)+(t−2)

tp+1 ≤
1

(t+1)p ,

ai
tp+1

≤ ai
2− p

{
1

(t+ 1)p
−
(
1− 2

t

) 1

tp

}
. (5.22)

Using Eq. (5.20) and Eq. (5.22) and rearranging terms, for any t ≥ t0 we get

δt+1 −
N∑
i=1

ai
(2− pi)(t+ 1)pi

≤
(
1− 2

t

){
δt −

N∑
i=1

ai
(2− pi)tpi

}
.

Letting τt = δt −
∑N

i=1
ai

(2−pi)tpi
we have τt+1 ≤ (1 − 2

t )τt. Now, if τt0 ≤ 0 then τt ≤ 0 for any

t ≥ t0 and thus (5.21) holds. Otherwise, if τt0 > 0 then for t ≥ t0 + 1 we have

τt ≤ τt0

t−1∏
i=t0

(
1− 2

i

)
≤ τt0

t−1∏
i=t0

(
1− 1

i

)
≤ (t0 − 1)τt0

t
≤ 2(t0 − 1)δt0

t
.

Thus, (5.21) holds in this case as well.

Upper bounds: only smoothness. Proof of Theorem 5.4.2

In this section we provide the proof of Theorem 5.4.2. The proof will be split into two parts: for

(5.2) and (5.3) respectively. But first we start with the part of the proof that is common for both

Algorithms. Both of these proofs follow from Lemma 5.4.1, which, we recall, states that

E
[
∥∇f(xS)∥2

]
≤

2δ1 +
∑T

t=1 ηt
(
b2t + L̄ηtvt

)∑T
t=1 ηt

(
1− L̄ηtm

) , (5.23)
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where δ1 = E[f(x1)] − f⋆. In particular, using corresponding bounds on the variance and

bias, we substitute these values in the above inequality and focus on deriving an upper bound

for the resulting sequences. Further unifying the proof, we introduce the following short-hand

notation

ΞT ≜ d
− 2(β−1)

2β−1 T
− β

2β−1 .

Using this notation, algorithm 5.1 with either (5.2) or (5.3) have the following initialization of

parameters

ηt = min
(y
d
, ΞT

)
and ht = h · T− 1

2(2β−1) ,

where we recall that

(y, h) =


(

1
8κL̄

, d
1

2β−1

)
for estimator (5.2)(

d−2
2L̄C̄d,1d

, d
2β+1
4β−2

)
for estimator (5.3)

.

Furthermore, in the notation of Lemma 5.4.1 and, in particular, of Eq. (5.23) above, the bounds

in Lemma 5.3.3 and Lemma 5.3.5 imply that the choice of ηt for both Algorithms ensures that

1− L̄ηtm ≤ 1

2
.

Thus, as a consequence of the above argument and Eq. (5.23), both Algorithms satisfy

E
[
∥∇f(xS)∥2

]
≤

(
T∑
t=1

ηt

)−1(
4δ1 + 2

T∑
t=1

ηtb
2
t + 2L̄

T∑
t=1

η2t vt

)
. (5.24)

Furthermore, since ηt = min(y/d, ΞT ), then in either case we have

(
T∑
t=1

ηt

)−1

= max

(
d

Ty
,

1

TΞT

)
≤ d

Ty
+

1

TΞT
.

Substituting the above into Eq. (5.24) we deduce that

E
[
∥∇f(xS)∥2

]
≤
(
d

Ty
+

1

TΞT

)(
4δ1 + 2

T∑
t=1

ηtb
2
t + 2L̄

T∑
t=1

η2t vt

)
.

Finally, by the definition of ηt we have ηt ≤ ΞT for all t = 1, . . . , T . Thus, the above can be

further bounded as

E
[
∥∇f(xS)∥2

]
≤
(
d

y
+

1

ΞT

)
4δ1
T

+ 2

(
dΞT

Ty
+

1

T

) T∑
t=1

{
b2t + L̄ΞT vt

}
. (5.25)
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In the rest of the proof we use the algorithm specific bounds on bt and vt as well as the

particular choice of y in order to further bound the above inequality.

Part I: for estimator 5.2

Lemma 5.3.2 (for the bias) and Lemma 5.3.3 (for the variance) in the notation of Eq. (5.23)

read as

b2t ≤
(

κβL

(ℓ− 1)!

)2

h
2(β−1)
t and vt = 4dκL̄2h2t +

d2σ2κ

2h2t
, and m = 4dκ .

Substituting the above into Eq. (5.25), we deduce that

E ∥∇f(xS)∥2 ≤
(
d

y
+ Ξ−1

T

)
4δ1
T

+

(
dΞT

Ty
+

1

T

) T∑
t=1

{
A3h

2(β−1)
t + ΞTd

2
(
A4d

−1h2t+A5h
−2
t

)}

≤
(
d

y
+ Ξ−1

T

)
4δ1
T

+
dΞT+1

T

T∑
t=1

{
A6h

2(β−1)
t + A7d

2ΞT

(
d−1h2t + h−2

t

)}
(5.26)

where A3 =
(

κβL
(ℓ−1)!

)2
, A4 = 4κL̄3, A5 = κσ2L̄

2 , and A6 = 2A3
(
y−1+1

)
, A7 = 2

(
y−1+1

)(
A4+A5

)
.

Since ht = hT for t = 1, . . . , T , then Eq. (5.26) reads as

E ∥∇f(xS)∥2 ≤
(
d

y
+Ξ−1

T

)
4δ1
T

+ (dΞT+1)
(
A6h

2(β−1)
T + A7d

2ΞT

(
d−1h2T + h−2

T

))
. (5.27)

Substituting the expressions for ΞT and hT into the above bound, the right hand side of

Eq. (5.27) reduces to

4d

Ty
δ1 +

{
4δ1 +

((
d

T β

) 1
2β−1

+1

)(
A6 + A7

(
1 + d

5−2β
2β−1T

− 2
2β−1

))}(d2
T

) β−1
2β−1

.

To conclude, we note that the assumption T ≥ d
1
β , implies that for all β ≥ 2 we have

d
5−2β
2β−1T

− 2
2β−1 ≤ 1 and (d/Tβ)

1
2β−1 ≤ 1. Therefore, the final bound reads as

E
[
∥∇f(xS)∥2

]
≤ 4d

Ty
δ1 +

(
4δ1 + 2

(
A6 + 2A7

))(d2
T

) β−1
2β−1 ≤

(
A1δ1 + A2

)(d2
T

) β−1
2β−1

,

where we introduced A1 = 4(y−1 + 1) and A2 = 2
(
A6 + 2A7

)
.

150



Part II: for estimator 5.3

Lemma 5.3.4 (for the the bias) and Lemma 5.3.5 (more precisely, Eq. (5.7) for the variance)

imply that

b2t ≤ (κβℓL)
2h

2(β−1)
t d1−β, vt =

C̄d,2d
2κL̄2h2t

(d− 2)(d+ 1)
+
d3σ2κ

2h2t
, and m =

C̄d,1d
2κ

d− 2
,

with ℓ = ⌊β⌋. Similarly to the previous paragraph, from Eq. (5.25) and the above bounds on

bt, vt,m we deduce that

E ∥∇f(xS)∥2 ≤ (dΞT+1)
(
A6d

1−βh
2(β−1)
T +ΞT

(
A7h

2
T+A8d

3h−2
T

))
+

(
d

y
+Ξ−1

T

)
4δ1
T

,
(5.28)

where the constants are defined as

A6 = 2(κβℓL)
2
(
y−1 + 1

)
, A7 =

2C̄d,2d
2κL̄3

(d− 2)(d+ 1)

(
y−1 + 1

)
, A8 = L̄σ2κ

(
y−1 + 1

)
.

Substituting ΞT and hT into Eq. (5.28), we deduce that

E ∥∇f(xS)∥2 ≤
4d

Ty
δ1 +

{
4δ1 +

((
d

T β

) 1
2β−1

+ 1

)(
A6 + A8 + A7

(
d5−2β

T 2

) 1
2β−1

)}(
d2

T

) β−1
2β−1

.

Finally, we assumed that T ≥ d
1
β , which implies that both d

Tβ and d5−2β

T 2 are upper bounded by

one. Thus, the final bound reads as

E ∥∇f(xS)∥2 ≤ (A1δ1 + A2)

(
d2

T

) β−1
2β−1

,

where A1 = 4(y−1 + 1), and A2 = 2 (A6 + A7 + A8).

Master lemmas for gradient dominant and strongly convex case

Proof of Theorem 5.4.4. For compactness we write Et[·] in place of E[· | xt]. Using Lipschitz

continuity of ∇f (see e.g. Bubeck, 2015, Lemma 3.4) and the update of the algorithm in

Eq. (5.1) we can write

Et[f(xt+1)] ≤ f(xt)− ηt ⟨∇f(xt) ,Et[gt]⟩+
L̄η2t
2

Et

[
∥gt∥

2
]

≤ f(xt)− ηt ∥∇f(xt)∥2 + ηt ∥∇f(xt)∥ ∥Et[gt]−∇f(xt)∥+
L̄η2t
2

Et

[
∥gt∥

2
]
.
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Furthermore, invoking the assumption of the bias and the variance of gt and using the fact

that 2ab ≤ a2 + b2 we deduce for any iterative procedure expressed in Eq. (5.1) satisfies

δt+1 ≤ δt −
ηt
2
(1− L̄ηtV1)E[∥∇f(xt)∥2] +

ηt
2

(
b2L2h

2(β−1)
t + L̄ηt

(
V2h

2
t + V3σ

2h−2
t

))
,

where δt = E[f(xt)−f⋆]. Furthermore, our choice of the step-size ηt ensures that 1− L̄ηtV1 ≥
1
2 . Then, since f is α-gradient dominant we deduce that

δt+1 ≤ δt

(
1− ηtα

2

)
+
ηt
2

(
b2L2h

2(β−1)
t + L̄ηt

(
V2h

2
t + V3σ

2h−2
t

))
. (5.29)

In what follows we will analyze the above recursion. Let us set T0 = ⌊8L̄V1
α ⌋—the moment

when ηt switches its regime. In the first part of the proof we suppose that T > T0, then we

analyse the case of T ≥ T0.

The first part: T > T0. In this part the recursion (5.29) has two different regimes, depending

on the value of ηt.

In the first regime, for any t = T0 + 1, . . . , T , we have ηt = 4
αt and (5.29) can be written as

δt+1 ≤ δt

(
1− 2

t

)
+ 2b2L2 · h

2(β−1)
t

αt
+

8L̄

α2t2

(
V2h

2
t + V3σ

2h−2
t

)
. (5.30)

Additionally in this regime of t, we have ht =
(
4L̄V3
b2t

) 1
2β . Thus, substituting this expression for

ht into Eq. (5.30), we deduce that

δt+1 ≤ δt

(
1− 2

t

)
+

A3
α ∧ α2

· V3

(
V3

b2

)− 1
β

t
− 2β−1

β +
A4
α2

· V2

(
V3

b2

) 1
β

t
− 2β+1

β ,

where A3 = 2
3− 2

β (L2 + σ2)L̄
1− 1

β , and A4 = 2
3+ 2

β L̄
1+ 1

β . Applying Lemma 5.7.8 to the above

recursion we obtain

δT ≤ 2T0
T
δT0+1 +

βA3
(β+1)(α∧α2)

· V3

(
V3

b2

)− 1
β

T
−β−1

β +
βA4

(3β+1)α2
· V2

(
V3

b2

) 1
β

T
−β+1

β . (5.31)

In the second regime of t ∈ [1, T0], we have ht =
(
4L̄V3
b2T

) 1
2β , ηt = 1

2L̄V1
, and 4

(T0+1)α ≤ ηt ≤ 4
T0α

.

Substituting ht and ηt into Eq. (5.29), for 1 ≤ t ≤ T0

δt+1 ≤ δt

(
1− 2

T0 + 1

)
+

2
3− 2

β L̄
1− 1

β

T0(α ∧ α2)
· V3

(
V3

b2

)− 1
β

(
L2T

−β−1
β + σ2

T
1
β

T0

)

+
2
3+ 2

β L̄
1+ 1

β

α2T 2
0

· V2

(
V3

b2

) 1
β

T
− 1

β .

Using a rough bound 1 − 2
T0+1 ≤ 1 and unfolding the above recursion, we obtain from the
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above

δT0+1 ≤ δ1 +
2
3− 2

β L̄
1− 1

β

α ∧ α2
· V3

(
V3

b2

)− 1
β

(
L2T

−β−1
β + σ2

T
1
β

T0

)
+

2
3+ 2

β L̄
1+ 1

β

α2T0
· V2

(
V3

b2

) 1
β

T
− 1

β .

Taking into account the above derived inequality, the definition of T0, and the fact that T0 ≤ T ,

the right hand side of the last equation can be bounded as

2T0
T
δT0+1 ≤

16L̄V1

αT
δ1 +

2A3
α ∧ α2

· V3

(
V3

b2

)− 1
β

T
−β−1

β +
2A4
α2

· V2

(
V3

b2

) 1
β

T
−β+1

β . (5.32)

The combination of Eq. (5.31) and Eq. (5.32) implies

δT ≤ A1 ·
V1

αT
δ1 +

A2
α ∧ α2

·

(
V3

(
V3

b2

)− 1
β

+ V2

(
V3

b2

) 1
β

T
− 2

β

)
T
−β−1

β ,

where A1 = 16L̄ and A2 =
(
2 + β

β+1

)
A3 +

(
2 + β

3β+1

)
A4.

The second part: handling the case T ≤ T0. The above analysis was performed under

the assumption that T > T0, to conclude, we need to complete the above derived bound for

the case when T ≤ T0. Eq (5.29) and the fact that in this regime ht =
(
4L̄V3
b2T

) 1
2β imply

δT+1 ≤ δ1

(
1− 2

T0 + 1

)T

+
2
3− 2

β L̄
1− 1

β

T0(α ∧ α2)
· V3

(
V3

b2

)− 1
β

T∑
t=1

(
L2T

−β−1
β + σ2

T
1
β

T0

)

+
2
3+ 2

β L̄
1+ 1

β

α2T 2
0

· V2

(
V3

b2

) 1
β

T∑
t=1

T
− 1

β

≤δ1
(
1− 2

T0 + 1

)T

+
A3

α ∧ α2
· V3

(
V3

b2

)− 1
β

T
−β−1

β +
A4
α2

· V2

(
V3

b2

) 1
β

T
−β+1

β .

Recall that for any ρ, T > 0, we have (1 − ρ)T ≤ exp(−ρT ) ≤ 1
ρT and hence for ρ = 2

T0+1 we

can write

δT+1 ≤ A1
V1

α(T + 1)
δ1 +

A2
α ∧ α2

(
V3

(
V3

b2

)− 1
β

+ V2

(
V3

b2

) 1
β

T
− 2

β

)
(T + 1)

−β−1
β ,

where the last inequality follows by the definition of T0 and the fact that T + 1 ≤ 2T , for

T ≥ 1.

Lemma 5.7.9. Consider the iterative algorithm defined in Eq. (5.1). Assume that f is α-
strongly convex on Rd and Assumption 5.4.3 is satisfied. Then, we have for all x ∈ Θ

E[f(xt)− f(x)] ≤ rt − rt+1

2ηt
− rt

(α
4
− ηt

2
L̄2V1

)
+

(bLhβ−1
t )2

α
+
ηt
2

(
V2L̄

2h2t + V3σ
2h−2

t

)
, (5.33)

where rt = E∥xt − x∗∥2.
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Proof. Recall the notation Et[·] = E[· | xt]. For any x ∈ Θ, by the definition of projection,

∥xt+1 − x∥2 =
∥∥ProjΘ

(
xt − ηtgt

)
− x
∥∥2 ≤ ∥xt − ηtgt − x∥2 , (5.34)

where the above inequality is obtained from the definition of Euclidean projection on the set Θ

and the fact that x ∈ Θ. Expanding squares and rearranging the above inequality, we deduce

that Eq. (5.34) is equivalent to

⟨gt,xt − x⟩ ≤ ∥xt − x∥2 − ∥xt+1 − x∥2

2ηt
+
ηt
2
∥gt∥

2 . (5.35)

On the other hand, since f is a α-strongly function on Θ, we have

f(xt)− f(x) ≤ ⟨∇f(xt),xt − x⟩ − α

2
∥xt − x∥2 . (5.36)

Combining Eq. (5.35) with Eq. (5.36) and denoting at = ∥xt − x∥2, we deduce that

Et[f(xt)−f(x)] ≤ ∥Et[gt]−∇f(xt)∥ ∥xt−x∥+ 1

2ηt
Et[at−at+1] +

ηt
2
Et ∥gt∥

2−α
2
Et[at]

≤ bLhβ−1
t ∥xt − x∥+ 1

2ηt
Et[at − at+1]

+
ηt
2

(
V1E ∥∇f(xt)∥2 + V2L̄

2h2t + V3σ
2h−2

t

)
− α

2
Et[at] .

(5.37)

Since 2ab ≤ a2 + b2, we can write

bLhβ−1
t ∥xt − x∥ ≤ (bLhβ−1

t )2

α
+
α

4
∥xt − x∥2 . (5.38)

Substituting Eq. (5.38) in Eq. (5.37), setting rt = E[at], and taking total expectation from both

sides of Eq. (5.37), yield

E[f(xt)− f(x)] ≤ rt − rt+1

2ηt
− rt

(α
4
− ηt

2
L̄2V1

)
+

(bLhβ−1
t )2

α
+
ηt
2

(
V2L̄

2h2t + V3σ
2h−2

t

)
,

where the last display is obtained from α strong convexity of f .

Proof of Theorem 5.4.6. Since, by definition, ηt ≤ α
4L̄2V1

, then we have α
4 − ηt

2 L̄
2V1 ≥ α

8 and

(5.33) is simplified as

E[f(xt)− f⋆] ≤ rt − rt+1

2ηt
− α

8
rt +

(bLhβ−1
t )2

α
+
ηt
2
(V2L̄

2h2t + V3σ
2h−2

t ) . (5.39)

Recall that T0 = ⌊16L̄2V1
α2 ⌋—the moment when ηt changes its behaviour. Let us first assume

that T0 < T and provide the proof for this case. The case of T ≤ T0 will be treated separately,

in the end of the present proof. The case distinguishing is slightly different for this proof
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compared to the previous proofs. By convexity of f , we have

f(x̄T )− f⋆ ≤ 1

T

T∑
t=1

(f(xt)− f⋆) =
1

T

T∑
t=T0+1

(f(xt)− f⋆)︸ ︷︷ ︸
case 1

+
1

T

T0∑
t=1

(f(xt)− f⋆)︸ ︷︷ ︸
case 2

. (5.40)

The first part: T > T0. For any T0 + 1 ≤ t ≤ T , we have ηt = 4
αt and ht =

(
2V3
b2t

) 1
2β .

Summing both side of Eq. (5.39) from T0 + 1 to T , and substituting ηt and ht, we deduce that

T∑
t=T0+1

E[f(xt)− f⋆] ≤ α

8

T∑
t=T0+1

((rt − rt+1) t− rt)︸ ︷︷ ︸
=:I

+
A4
α
b

2
βV

β−1
β

3

T∑
t=T0+1

t
−β−1

β

︸ ︷︷ ︸
=:II

+
A5
α
V2

(
V3

b2

) 1
β

T∑
t=T0+1

t
− 1

β
−1

︸ ︷︷ ︸
=:III

,

where we defined I, II, and III, with A4 = 2
β−1
β (L2 + σ2) and A5 = 2

β+1
β L̄2.

It is straightforward to see that I ≤ α
8T0rT0+1 (the summation, involved in I, is telescoping).

Furthermore, we have II ≤ A4
α b

2
βV

β−1
β

3

∑T
t=1 t

−β−1
β ≤ βA4

α b
2
βV

β−1
β

3 T
1
β . Finally, for the term III we

have

III ≤ A5
α
V2

(
V3

b2

) 1
β

T∑
t=T0+1

t
− 1

β
−1 ≤ A5

α
V2

(
V3

b2

) 1
β

T
− 2

β

0

T∑
t=1

t
−β−1

β ≤ A6
α
V2

(
V3

V2
1b

2

) 1
β

T
1
β ,

where A6 = 2
− 8

β β · A5, and the last two inequalities are obtained from the fact that α ≤ L̄.

Combining the bounds on I, II, and III we obtain

T∑
t=T0+1

E[f(xt)− f⋆] ≤ α

8
T0rT0+1 +

(
βA4b

2
βV

β−1
β

3 + A6V2

(
V3

V2
1b

2

) 1
β

)
T

1
β

α
. (5.41)

For the term rT0+1, Eq. (5.39) implies that for 1 ≤ t ≤ T0

rt+1 ≤ rt + 2ηt ·
(bLhβ−1

t )2

α
+ η2t

(
V2L̄

2h2t + V3σ
2h−2

t

)
.

In addition, for 1 ≤ t ≤ T0 we have ηt = α
4L̄2V1

and ηt ≤ 4
αT0

. Therefore, unfolding the above

recursion we get

rT0+1 ≤ r1 +

T0∑
t=1

(
8

α2T0

(
bLhβ−1

t

)2
+

16

α2T 2
0

(
V2L̄

2h2t + V3σ
2h−2

t

))
.
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Plugging in ht =
(
2V3
b2T

) 1
2β , yields

rT0+1 ≤ r1 + 8

(
A4b

2
βV

β−1
β

3 + A5V2

(
V3

b2

) 1
β

T
− 2

β

)
T

1
β

α2T0
.

Accordingly, the right hand side of Eq. (5.41) can be bounded as

α

8
T0rT0+1 ≤

2L̄2V1

α
r1 +

(
A4b

2
βV

β−1
β

3 + A5V2

(
V3

b2

) 1
β

T
− 2

β

)
T

1
β

α
. (5.42)

Substituting the bound in Eq. (5.42) into Eq. (5.41), we deduce that

T∑
t=T0+1

E[f(xt)− f⋆] ≤

(
(β+1)A4b

2
βV

β−1
β

3 + (A5+A6)V2

(
V3

b2

) 1
β
(
V
− 2

β

1 + T
− 2

β

))
T

1
β

α

+
2L̄2V1

α
r1 .

(5.43)

In the second regime of t ∈ [1, T0], note that 4
α(T0+1) ≤ ηt. Then, summing (5.39) from 1 to T0

we have

T0∑
t=1

E[f(xt)− f⋆] ≤ α(T0 + 1)

8
r1 +

(
A4b

2
βV

β−1
β

3 + A5V2

(
V3

b2

) 1
β

T
− 2

β

)
T

1
β

α
. (5.44)

As indicated in Eq. (5.40) at the beginning of the proof, we sum up the two studied cases—

Eq. (5.43) and Eq. (5.44)—to deduce that

E[f(x̄T )− f⋆] ≤ A1
V1

αT
r1 +

(
A2b

2
βV

β−1
β

3 + A3V2

(
V3

b2

) 1
β
(
V
− 2

β

1 + T
− 2

β

))
T
−β−1

β

α
,

where A1 =
49
16 L̄

2 (for this bound we used T0 ≥ 16), A2 = (β + 2)A4, and A3 = 2A5 + A6.

The second part: handling the case T ≤ T0. At the end, we state the proof for the case

T ≤ T0. By Eq. (5.39), we can write

T∑
t=1

E[f(xt)− f⋆] ≤ r1
2η1

+

(
A4b

2
βV

β−1
β

3 T
1
β + A5V2

(
V3

b2

) 1
β

T
− 2

β

)
T

1
β

α
.

We conclude by convexity of f .
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Constrained optimization: the strongly convex-case

Proof of Lemma 5.4.8. Recalling that supx∈Θ ∥∇f(x)∥ ≤ G, by Lemma 5.7.9 we have for any

t = 1, . . . , T

0 ≤ E[f(xt)− f⋆] ≤ rt − rt+1

2ηt
− α

4
rt +

b2t
α

+
ηt
2

(
vt +mG2

)
.

Summing up the above inequalities over t = 1, . . . , T , we get

T∑
t=1

E[f(xt)− f⋆] ≤ 1

2

T∑
t=1

(rt − rt+1

ηt
− α

2
rt

)
+

T∑
t=1

(ηt
2
(vt +mG2) +

b2t
α

)
. (5.45)

Since we set ηt = 2
αt , then the first term on the r.h.s. of Eq. (5.45) is non-positive. Substitution

of ηt = 2
αt into Eq. (5.45) in conjunction with the non-positivity of the first term in (5.45), implies

T∑
t=1

E[f(xt)− f⋆] ≤ 1

α

T∑
t=1

(
1

t
(vt +mG2) + b2t

)
.

The proof now follows by the standard bound on the partial sum of the harmonic series and

the convexity of f .

Proof of Theorem 5.4.9 . The proof is devided in two parts, one for estimator 5.2 and the other

one for estimator 5.3. In this result we set ηt = 2
αt and ht = h · t−1/2β, where h equals to d

1
β

for estimator 5.2 and to d
2+β
2β for estimator 5.3. Analysis of both algorithms starts with Lemma

5.4.8, which states that

E[f(x̄T )− f⋆] ≤ mG2 (log(T ) + 1)

αT
+

1

αT

T∑
t=1

(vt
t
+ b2t

)
,

for any algorithm encompassed by Eq. 5.1. We recall that for the application of the above

inequality it is assumed that f is α-strongly convex; Θ is a convex and closed subset of Rd,

with supx∈Θ ∥∇f(x)∥2 ≤ G.

Part I: for estimator 5.2 By the bias and variance bounds in Lemmas 5.3.2 and 5.3.3 re-

spectively, we have

E[f(x̄T )− f⋆] ≤ 4κG2 log(eT )
d

αT
+

1

αT

T∑
t=1

(
A4h

2(β−1)
t +

1

t
d
(
A5h

2
t + A6dh

−2
t

) )
,

157



where A4 = (κL)2, A5 = 4κL̄2, and A6 =
σ2κ
2 . Substituting ht =

(
d2

t

) 1
2β
, we deduce that

E[f(x̄T )− f⋆] ≤ 4dκG2 log(eT )

αT
+

1

αT

T∑
t=1

(A4+A6)

(
d2

t

)β−1
β

+A5d
1+ 2

β t
−β+1

β

 . (5.46)

It remains to bound the partial sum appearing in the above inequality. It holds that
∑T

t=1 t
−β−1

β ≤
βT

1
β and

∑T
t=1 t

− 1
β
−1 ≤ 1 + β. Therefore, Eq. (5.46) can be further bounded as

E[f(x̄T )− f⋆] ≤ A1 (log(T ) + 1)
d

αT
+

A2
αT

d
2(β−1)

β T
1
β +

A3
αT

d
1+ 2

β ,

where A1 = 4κG2, A2 = β (A3 + A5), and A3 = (β + 1)A5.

Part II: for estimator 5.3 Using Lemma 5.3.4 (bound on the bias) and Lemma 5.3.5 (bound

on the variance), we get

E[f(x̄T )− f⋆] ≤ A1 (log(T ) + 1)
d

αT
+

1

αT

T∑
t=1

(
A4h

2(β−1)
t d1−β +

1

t

(
A5h

2
t + A6d

3h−2
t

) )
,

where A1 =
C̄d,1dκ
d−2 , A4 = (κβℓL)

2, A5 =
C̄d,2d

2κL̄2

(d−2)(d+1) , and A6 = σ2κ
2 . Plugging in ht = d

2+β
2β t

− 1
2β ,

implies

E[f(x̄T )− f⋆] ≤ A1 (log(T ) + 1)
d

αT
+

1

αT

T∑
t=1

(A4 + A6)

(
d2

t

)β−1
β

+ A5d
1+ 2

β t
−β+1

β

 .

With a similar argument as in the previous paragraph, we dedeuce that

E[f(x̄T )− f⋆] ≤ A1 (log(T ) + 1)
d

αT
+

A2
αT

d
2(β−1)

β T
1
β +

A3
αT

d
1+ 2

β .

where we assigned A2 = β (A4 + A6), and A3 = (β + 1)A5.

Lower bounds

Proof of Lemma 5.5.1. Observe that since the noise ξ1, . . . , ξT is assumed to be independent,

and ξt is independent of (z1, y1, . . . , zt−1, yt−1, τ t) for each t, the following decomposition holds

dPf = dF (y1 − f(z1))
T∏
t=2

dF

(
yt − f

(
Φt(z1, y1, . . . , yt−1)

))
dPt(τ t) ,

where Pt is the probability measure corresponding to the distribution of τ t. Introduce for

compactness dFf,t ≜ dF
(
yt − f

(
Φt(z1, y1, . . . , yt−1)

))
dPt(τ t), then in this notation we have
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dPf =
∏T

t=1 dFf,t. Analogously, the same holds for Pf ′ . Using the definition of the Hellinger

distance we can write

1−1

2
H2(Pf ,Pf ′) =

∫ √
dPf dPf ′ =

T∏
t=1

∫ √
dFf,t

√
dFf ′,t =

T∏
t=1

(
1−

H2
(
dFf,t, dFf ′,t

)
2

)
.

Finally, invoking the assumption on the cumulative distribution of the noise, we get

T∏
t=1

(
1−

H2
(
dFf,t, dFf ′,t

)
2

)
≥ min

1≤t≤T

(
1−

H2
(
dFf,t, dFf ′,t

)
2

)T

≥
(
1−max

u∈Θ

I0|f(u)− f ′(u)|
2

)T

.

Substituting into the penultimate equality and rearranging we conclude.

Proof of Theorem 5.5.2. The proof closely follows the lower bound established in Akhavan

et al. (2020). As mentioned in the main body of the paper, the main improvement of our lower

bound is in the use of the Hellinger distance in place of the KL-divergence. Hence, for this

proof we only briefly recall the construction of Akhavan et al. (2020). We first assume that

α ≥ T−1/2+1/β.

Let η0 : R → R be an infinitely many times differentiable function such that

η0(x) =


= 1 if |x| ≤ 1/4,

∈ (0, 1) if 1/4 < |x| < 1,

= 0 if |x| ≥ 1.

Set η(x) =
∫ x
−∞ η0(τ)dτ . Let Ω =

{
− 1, 1

}d be the set of binary sequences of length d.

Consider the finite set of functions fω : Rd → R,ω = (ω1, . . . , ωd) ∈ Ω, defined as follows:

fω(u) = α(1 + δ) ∥u∥2 /2 +
d∑

i=1

ωirh
βη(uih

−1), u = (u1, . . . , ud),

where ωi ∈ {−1, 1}, h = min
(
(α2/d)

1
2(β−1) , T

− 1
2β
)

and r > 0, δ > 0 are fixed numbers that will

be chosen small enough.

Akhavan et al. (2020) showed that fω ∈ F ′
α,β for r > 0 and δ > 0 small enough. In

particular, the show that minimizers of functions fω belong to Θ and are of the form

x∗
ω = (x∗(ω1), . . . , x

∗(ωd)) ,

where x∗(ωi) = −ωiα
−1(1 + δ)−1rhβ−1.

For any fixed ω ∈ Ω, we denote by Pω,T the probability measure corresponding to the

joint distribution of ((zi, yi)Ti=1, (τ i)
T
i=1) where yt = fω(zt) + ξt with independent identically
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distributed ξt’s such that (2.9) holds, ξt is independent of (z1, y1, . . . , zt−1, yt−1, τ t) for each t,

and zt’s chosen by a sequential strategy in ΠT . Consider the statistic

ω̂ ∈ argmin
ω∈Ω

∥zT − x∗
ω∥ .

Classical triangle inequality based arguments yield

max
ω∈Ω

Eω,T

[
∥zT − x∗

ω∥
2 ] ≥ α−2r2h2β−2 inf

ω̂
max
ω∈Ω

Eω,T

[
ρ(ω̂,ω)

]
.

Note that for all ω,ω′ ∈ Ω such that ρ(ω,ω′) = 1 we have

max
u∈Rd

|fω(u)− fω′(u)| ≤ 2rhβη(1) ≤ 2rT−1/2η(1) .

Thus, letting 2r <
(
v0/η(1)

)
T 1/2 to ensure that 2rT−1/2η(1) ≤ v0 we apply Lemma 5.5.1 and

deduce for such ω,ω′ ∈ Ω that

H2(Pω,T ,Pω′,T ) ≤ 2
(
1−

(
1− T−1

)T) ≤ 2

(
1− 1

4

)
= 3/2 .

Applying (Tsybakov, 2009, Theorem 2.12) we deduce that

inf
ω̂

max
ω∈Ω

Eω,T [ρ(ω̂,ω)] ≥ 0.01 · d .

Therefore, we have proven that if α ≥ T
−β+2

2β then there exist r > 0 and δ > 0 such that

max
ω∈Ω

Eω,T

[
∥zT − x∗

ω∥
2 ] ≥ 0.001 · dα−2r2h2β−2 = 0.01× r2min

(
1,

d

α2
T
−β−1

β

)
. (5.47)

This implies (5.12) for α ≥ T
−β+2

2β , by the inclusion of the functional classes, we have the

bound of this order for all α.

We now prove (5.11). From (5.47) and α-strong convexity of f we get that, for α ≥ T
−β+2

2β ,

max
ω∈Ω

Eω,T

[
f(zT )− f(x∗ω)

]
≥ 0.005 · r2min

(
α,

d

α
T
−β−1

β

)
.

This implies (5.11) in the zone α ≥ T
−β+2

2β since for such α we have

min
(
α,

d

α
T
−β−1

β

)
= min

(
max(α, T

−β+2
2β ),

d√
T
,
d

α
T
−β−1

β

)
.

On the other hand, min
(
α0,

d
α0
T
−β−1

β
)
= min

(
T
−β+2

2β , d/
√
T
)
, and the same lower bound

holds for 0 < α < α0 by the nestedness argument that we used to prove (5.12) in the zone

0 < α < α0. Thus, (5.11) follows.

Proof of Theorem 5.5.3. Clearly, F ′
1,β ⊂ Fβ, where F ′

1,β is the class of functions considered
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in Theorem 5.5.2. As the functions in F ′
1,β are 1-strongly convex, for t ≥ 1, ∥∇f(zt)∥2 ≥

2(f(zt)− f⋆). Using Theorem 5.5.2, for T ≥ 1, we have

sup
f∈F ′

1,β

E[f(zt)− f⋆] ≥ C ′dT
−β−1

β , (5.48)

where C ′ > 0 does not depend on d, T , and β. We have for any random variable S that

we consider E[∥∇f(zS)∥2] =
∑T

t=1 ptE[∥∇f(zt)∥2], where (p1, . . . , pT ) is a probability vector:

pt ≥ 0, and
∑T

t=1 pt = 1. Thus,

E[∥∇f(zS)∥2] ≥ 2

T∑
t=1

ptE[f(zt)− f⋆] ≥ 2E

[
f

(
T∑
t=1

ptzt

)
− f⋆

]
. (5.49)

Note that z̃T =
∑T

t=1 ptzt is an estimator depending only on the past, that is in the same class

of estimators as zT . Therefore, the bound (5.48) holds for z̃T as well. Combining (5.48) and

(5.49) gives (5.5.2).
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Chapter 6

Zero-order optimization of highly
smooth functions in a passive
scheme

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
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We propose a new method for estimating the minimizer x∗ and the minimum value f∗ of

a smooth and strongly convex regression function f from the observations contaminated by

random noise. Our estimator zn of the minimizer x∗ is based on a version of the projected gra-

dient descent with the gradient estimated by a regularized local polynomial algorithm. Next,

we propose a two-stage procedure for estimation of the minimum value f∗ of regression func-

tion f . At the first stage, we construct an accurate enough estimator of x∗, which can be, for

example, zn. At the second stage, we estimate the function value by at the point obtained

at the first stage using a rate optimal nonparametric procedure. We derive non-asymptotic

upper bounds for the quadratic risk and optimization error of zn, and for the risk of estimating

f∗. We establish minimax lower bounds showing that, under certain choice of parameters,

the proposed algorithms achieve the minimax optimal rates of convergence on the class of

smooth and strongly convex functions.
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6.1 Introduction

Estimating the minimum value and the minimizer of an unknown function from observation

of its noisy values on a finite set of points is a key problem in many applications. Let D =

{x1, . . . ,xn} ⊂ Rd be a design set and let Θ be a compact and convex subset of Rd. Assume

that we observe noisy values of an unknown regression function f : Rd → R at points of the

design set:

yi = f(xi) + ξi, i = 1, . . . , n, (6.1)

where ξi’s are independent zero mean errors with E[ξ2i ] ≤ σ2. Our goal is to estimate the min-

imum value of the regression function f∗ = minx∈Θ f(x) and its location x∗ = argminx∈Θ f(x)

when x∗ is unique. As accuracy measures of an estimator x̂n of x∗ we consider the expected

optimization error E(f(x̂n) − f∗) and the quadratic risk E ∥x̂n − x∗∥2, where ∥ · ∥ denotes the

Euclidean norm. The accuracy of an estimator Tn of f∗ will be measured by the risk E|Tn−f∗|.
We will assume that f belongs to the class of β-Hölder smooth and strongly convex functions

with β ≥ 2 (see Section 6.2 for the definitions).

The existing literature considers two different assumptions on the choice of the design.

Under the passive design setting, the points xi are sampled independently from some prob-

ability distribution. Under the active (or sequential) design setting, for each i the statistician

can plan the experiment by selecting the point xi depending on the previous queries and the

corresponding responses x1, y1, . . . ,xi−1, yi−1. The accuracy of estimation under the active

design is at least as good as under the passive design but it can be strictly better, which is the

case for the problems considered here.

Active design, estimation of x∗. Active (or sequential) scheme has a long history start-

ing at least from the seminal work of Kiefer and Wolfowitz (1952) where an analog of the

Robins-Monro algorithm was introduced to estimate the minimizer x∗ of a univariate function

f. The idea of the Kiefer-Wolfowitz (KW) method is to approximate the derivative of f using

first order differences of yi’s and plug this estimator in the gradient algorithm. Kiefer and Wol-

fowitz (1952) proved convergence in probability of the KW algorithm under some regularity

conditions on the regression function. A multivariate extension of the KW algorithm was pro-

posed by Blum (1954). Convergence rates of the KW algorithm for d = 1 were investigated

in Dupač (1957) proving an upper bound on the quadratic risk of the order n−2/3 for β = 3.

By using suitably chosen linear combinations of first order differences to approximate the gra-

dient, Fabian (1967b) proved the existence of a method that attains, for odd integers β ≥ 3,

the quadratic risk of the order n−(β−1)/β for functions f with bounded βth partial derivatives.

The method of Fabian (1967b) uses (β − 1)/2 evaluations yi at every step of the algorithm

in order to approximate the gradient. Chen (1988) and Polyak and Tsybakov (1990) have

established minimax lower bounds for the estimation risk on the class of β−Hölder smooth

and strongly convex functions f , for all β ≥ 2. For the quadratic risk, these bounds are of the

order n−(β−1)/β. Polyak and Tsybakov (1990) proposed a new class of methods using smooth-
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ing kernels and randomization to approximate the gradient. This constitutes an alternative to

the earlier used deterministic schemes derived from finite differences. Polyak and Tsybakov

(1990) proved that such randomized methods attain the minimax optimal rate n−(β−1)/β on the

above classes for all β ≥ 2 and not only for odd integers β ≥ 3. An additional advantage over

Fabian’s algorithm is the computational simplicity of these methods. In particular, they require

at each step only one or two evaluations of the function. For subsequent developments on

similar methods, we refer to Akhavan et al. (2020, 2021); Bach and Perchet (2016); Dippon

(2003b), where one can find further references.

Active design, estimation of f∗. The problem of estimating f∗ under the active scheme

was first considered by Mokkadem and Pelletier (2007) who suggested a recursive estimator

and proved its asymptotic normality with
√
n scaling. Belitser et al. (2012) defined an estimator

of f∗ via a multi-stage procedure whose complexity increases exponentially with the dimension

d, and showed that this estimator achieves (asymptotically, for n greater than an exponent of

d) the Op(1/
√
n) rate when f is β-Hölder and strongly convex with β > 2. Akhavan et al.

(2020) improved upon this result by constructing a simple computationally feasible estimator

f̂n such that E|f̂n−f∗| = O(1/
√
n) for β ≥ 2. It can be easily shown that the rate 1/

√
n cannot

be further improved when estimating f∗. Indeed, using the oracle that puts all the queries at

the unknown true minimizer x∗ one cannot achieve better rate under the Gaussian noise.

Passive design, estimation of x∗. The problem of estimating the minimizer x∗ under

the i.i.d. passive design was probably first studied in Härdle and Nixdorf (1987), where some

consistency and asymptotic normality results were discussed. Tsybakov (1990a) proposed

to estimate x∗ by a recursive procedure using local polynomial approximations of the gradi-

ent. Considering the class of strongly convex and β-Hölder (β ≥ 2) regression functions f ,

Tsybakov (1990a) proves that the minimax optimal rate of estimating x∗ on the above class

of functions is n−(β−1)/(2β+d), and shows that the proposed estimator attains this optimal rate.

However, in order to define this estimator, one needs to know of the marginal density of the

design points that may be inaccessible in practice.

There was also some work on estimating x∗ in different passive design settings. Several

papers are analyzing estimation of x∗ in a passive scheme, where xi’s are given non-random

points in [0, 1] (Müller (1985, 1989)) or in [0, 1]d (Facer and Müller (2003)). Another line of

work (Härdle and Nixdorf (1987); Nazin et al. (1989, 1992); Tsybakov (1990a)) is to consider

the problem of estimating the zero of a nonparametric regression function under i.i.d. de-

sign, also called passive stochastic approximation when recursive algorithms are used. Nazin

et al. (1989, 1992); Tsybakov (1990a) establish minimax optimal rates for this problem and

propose passive stochastic approximation algorithms attaining these rates. Application to

transfer learning is recently developed in Krishnamurthy and Yin (2022), where one can find

further references on passive stochastic approximation.

Passive design, estimation of f∗. To the best of our knowledge, the problem of esti-

mating f∗ under i.i.d. passive design was not studied. However, there was some work on

a related and technically slightly easier problem of estimating the maximum of a function ob-
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served under the Gaussian white noise model in dimension d = 1 (Ibragimov and Khas’minskii

(1982); Lepski (1993)). Extrapolating these results to the regression model and general d

suggests that the optimal rate of convergence for estimating f∗ on the class of β-Hölder re-

gression functions f is of the order (n/ log n)−β/(2β+d). It is stated as a conjecture in Belitser

et al. (2021) for the passive model with equidistant deterministic design. It remains unclear

whether this conjecture is true since, for higher dimensions, the effect of the equidistant grid

induces an additional bias. However, we prove below that, under the i.i.d. random design,

the minimax optimal rate on the class of β-Hölder functions (without strong convexity) is in-

deed (n/ log n)−β/(2β+d). We are not aware of any results on estimation of f∗ on the class of

β-Hölder and strongly convex regression functions f , which is the main object of study in the

current work.

Finally, we review some results on a related problem of estimating the mode of a proba-

bility density function. There exists an extensive literature on this problem. In the univariate

case, Parzen (1962) proposed the maximizer of kernel density estimator (KDE) as an esti-

mator for the mode. Direct estimate of the mode based on order statistics was proposed by

Grenander (1965), where the consistency of the proposed method was shown. Other es-

timators of the mode in the univariate case were considered by (Chernoff, 1964; Dalenius,

1965; Venter, 1967). The minimax rate of mode estimation on the class of β-Hölder densities

that are strongly concave near the maximum was shown to be n−(β−1)/(2β+d) in Tsybakov

(1990b), where the optimal recursive algorithm was introduced. It generalizes an earlier result

of Khas’minskii (1979) who considered the special case d = 1, β = 2 and derived the minimax

lower bound of the order n−1/5 matching the upper rate provided by Parzen (1962). Klemelä

(2005) proposed to use the maximizer of KDE with the smoothing parameter chosen by the

Lepski method (Lepskii, 1991), and showed that this estimator achieves optimal adaptive rate

of convergence. Dasgupta and Kpotufe (2014) proposed minimax optimal estimators of the

mode based on k-nearest neighbor density estimators, emphasizing the implementation ease

of the method. Computational complexity of mode estimation was investigated by Arias-Castro

et al. (2022) showing the impossibility of a minimax optimal algorithm with sublinear compu-

tational complexity. It was shown that the maximum of a histogram, with a proper choice of

bandwidth, achieves the minimax rate while running in linear time. Bayesian approach to the

mode estimation was developed by Yoo and Ghosal (2019).

Contributions. In this paper, we consider the model described at the beginning of this sec-

tion under the i.i.d. passive observation scheme. The contributions of the present work can

be summarized as follows.

• Assuming that f belongs to the class of β-Hölder and strongly convex regression func-

tions we construct a recursive estimator of the minimizer x∗ adaptive to the unknown

marginal density of xi’s and achieving the minimax optimal rate n−(β−1)/(2β+d), for β ≥ 2,

up to a logarithmic factor.
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• We show that the minimax optimal rate for the problem of estimating the minimum value

f∗ of function f on the above class of functions scales as n−β/(2β+d), and we propose

an algorithm achieving this optimal rate for β > 2.

• We prove that the minimax optimal rate of estimating f∗ on the class of β-Hölder func-

tions (without strong convexity) is of the order (n/ log n)−β/(2β+d). Thus, dropping the

assumption of strong convexity causes a deterioration of the minimax rate only by a log-

arithmic factor. It suggests that strong convexity is not a crucial advantage in estimation

of the minimum value of a function under the passive design.

Given our results, we have the following table summarizing the minimax optimal rates for

estimation under the active and passive design. We note that the convergence rates for the

rate of quadratic risk, estimation of x∗ rate of estimating f∗

passive scheme n
− 2(β−1)

2β+d n
− β

2β+d

active scheme n
−β−1

β n−
1
2

Table 6.1: Comparisons between the rates of convergence for passive and active schemes

passive scheme suffer from the curse of dimensionality, while the rates for the active scheme

are independent of the dimension.

Notation. In all the theorems, where the rates contain log(n), we assume that n ≥ 2.

We denote by Ef the expectation with respect to the distribution of (xi, yi)
n
i=1 satisfying the

model (6.1); we also abbreviate this notation to E when there is no ambiguity. Vectors are

represented by bold symbols while uppercase English letters are used to denote matrices.

We denote by ∥ · ∥ the Euclidean norm, and by ∥·∥op the operator norm, i.e., for a ma-

trix A we have ∥A∥op = sup∥u∥≤1 ∥Au∥ . We denote the smallest eigenvalue of a square

matrix U by λmin (U). For any m ∈ N, we denote by [n] the set that contains all posi-

tive integers k, such that 1 ≤ k ≤ m. For β ∈ R+, let ⌊β⌋ be the biggest integer smaller

than β. Let S denote the number elements in the set {m : |m| ≤ ℓ}, where m is a d-

dimensional multi-index. For u ∈ Rd, let U(u) =

(
um(1)

m(1) , . . . ,
um(S)

m(S)

)⊤
, where the num-

bering is such that m(1) = (0, . . . , 0),m(2) = (1, 0, . . . , 0), . . . ,m(d+1) = (0, . . . , 0, 1). For d-

dimensional multi-indexm = (m1, . . . ,md), where mj ≥ 0 are integers, we define the absolute

value |m| = m1 + . . . +md, the factorial m! = m1! . . .md!, the power um = um1
1 . . . umd

d and

the differentiation operator Dm = ∂|m|

∂u
m1
1 ...∂u

md
d

.

6.2 Definitions and assumptions

We first introduce the class of β-Hölder functions that will be used throughout the paper. For

β, L > 0, by Fβ(L) we denote the class of ℓ = ⌊β⌋ times differentiable functions f : Rd → R
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satisfying the the following inequality∣∣∣∣∣∣f(x)−
∑
|m|≤l

1

m!
Dmf(x)(x − x′)m

∣∣∣∣∣∣ ≤ L∥x − x′∥β, ∀x,x′ ∈ Rd.

Our estimators will be based on kernels satisfying the following assumption.

Assumption 6.2.1. The kernel K : Rd → R has a compact support Supp(K) contained in the

unit Euclidean ball, and satisfies the following conditions

K(u) ≥ 0,

∫
K(u) du = 1, sup

u∈Rd

K(u) <∞ .

Furthermore, for special requirements of our analysis, we assume that K is a LK-Lipschitz

function, i.e. for any x,y ∈ Rd, we have

|K(x)−K(y)| ≤ LK ∥x − y∥ .

Assumption 6.2.2. It holds for all i, i′ ∈ [n], that: (i) ξi and xi′ are independent; (ii) E[ξi] = 0;

(iii) ξi is sub-Gaussian random variable, i.e., there exists σ > 0 such that for any t ≥ 0 it

satisfies P [|ξi| ≥ t] ≤ 2 exp
(
− t2

2σ2

)
.

Assumption 6.2.3. We consider the model (6.1) with f : Rd → R satisfying the following

assumptions

(i) The function f attains its minimum at x∗ ∈ Θ.

(ii) The function f belongs to Hölder functional class Fβ(L) with β ≥ 2.

(iii) There exists α > 0 such that the function f is α-strongly convex on Θ i.e. for any x,y ∈ Θ,

it satisfies

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ α

2
∥x − y∥2 .

(iv) The function f is uniformly bounded on the set Θ′ = {x + y : x ∈ Θ and ∥y∥ ≤ 1}
such that supx∈Θ′ f(x) ≤M .

By Fβ,α(L) we denote the class of regression functions f satisfying Assumption 6.2.3.

Next, we introduce an assumption on the distribution of xi’s.

Assumption 6.2.4. The random vectors x1, . . . ,xn are i.i.d. with distribution admitting a den-

sity p(·) with respect to the Lebesgue measure such that

0 < pmin ≤ p(x) ≤ pmax <∞, ∀x ∈ Θ′.

Throughout this paper, we call A > 0 a numerical constant, if A can only depend on d, Θ,

β, L, M , pmax, pmin, K, and σ, where the dependence on d is at most of a polynomial order
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with the degree of polynomial only depending on β. We note that dependence on the strong

convexity parameter α is not included in the numerical constant since we specify it explicitly in

our upper bounds.

6.3 Estimating the minimizer

We estimate the minimizer x∗ via an approximation of the gradient algorithm, where we replace

the gradient by its local polynomial estimator. The objective function f ∈ Fβ(L) in model (6.1)

can be well approximated by its Taylor polynomial of order ℓ in the neighbourhood of the target

point z,

f(x) ≈
∑
|m|≤ℓ

1

m!
Dmf(z)(z − x)m = θ⊤(z)U

(
x − z
h

)
,

where x is sufficiently close to z and, for h > 0,

U(u) =

(
um(1)

m(1)!
, . . . ,

um(S)

m(S)!

)⊤

, θ(z) =
(
h|m

(1)|Dm(1)
f(z), . . . , h|m

(S)|Dm(S)
f(z)

)⊤
.

After approximating the objective function by its Taylor expansion, we define the local poly-

nomial estimator of θ(z) (see e.g. (Tsybakov, 2009, Section 1.6)) as follows

θ̂k(z) = argmin
θ∈RS

k∑
i=1

[
yi − θ⊤U

(
xi − z
h

)]2
K

(
xi − z
h

)
,

where K : Rd → R is a kernel satisfying Assumption 6.2.1. Let the matrix Bk(z) and the vector

Dk(z) be defined as

Bk(z) =
1

khd

k∑
i=1

U

(
xi − z
h

)
U⊤

(
xi − z
h

)
K

(
xi − z
h

)
,

Dk(z) =
1

khd

k∑
i=1

yiU

(
xi − z
h

)
K

(
xi − z
h

)
.

Since θ̂k(z) is a weighted least squares estimator we can write it in the form

θ̂k(z) = Bk(z)−1Dk(z) ,

provided the matrix Bk(z) is invertible. The above remarks suggest to define an estimator for

∇f(z) as

gk(z) =
1

h
Aθ̂k(z) , (6.2)
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Algorithm 5 Passive Zero-Order Stochastic Projected Gradient

Requires Kernel K : Rd → R, step-sizes ηk > 0, parameters hk =
(
log(k+1)

k

) 1
2β+d and

λk =
(
log(k+1)

k

) β
2β+d

, for k ∈ [n].

Initialization Choose z1 ∈ Θ, and assign ηk = 1
αk , for k ∈ [n].

For k ∈ [n]

1. Let gk,λ(zk) = h−1
k

(
AB−1

k,λ(zk)Dk(zk)
)
,

2. Update zk+1 = ProjΘ
(
zk − ηkgk,λ(zk)

)
.

Return (zk)nk=1

where A is the matrix with elements

Ai,j =

1, if j = i+ 1

0, otherwise ,

for i ∈ [d], and j ∈ [S].

Since Bk(z) is not necessarily invertible, instead of using the estimator (6.2) we consider

its regularized version. Namely, we add a regularization constant λ > 0 to the diagonal entries

of Bk(z) and define Bk,λ(z) = Bk(z) + λI, where I is the identity matrix. This leads to the

following regularized estimator of the gradient

gk,λ(z) =
1

h
Aθ̂k,λ(z) :=

1

h
A(Bk(z) + λI)−1Dk(z) . (6.3)

The corresponding approximate gradient descent procedure is presented as Algorithm 5. It

outputs zk that will be used as an estimator of x∗. At round k of Algorithm 5, the matrix

Bk,λ(zk) = Bk(zk) + λI and the vector Dk(zk) can be computed recursively based on the first

k observations.

For any f ∈ Fβ(L), one can show that, under a suitable choice of parameters h and λ,

the estimation error for (6.3) E
∥∥gn,λ(x)−∇f(x)

∥∥, is of the order n−(β−1)/(2β+d). The rate

n−(β−1)/(2β+d) is known to be minimax optimal for estimating the gradient on the class Fβ(L),

cf. Stone (1982). This is true without the strong convexity assumption. However, the bounds

provided by Stone (1982) are asymptotic in n.

In the following theorem, we study the performance of Algorithm 5 for estimating x∗.

Theorem 6.3.1. Let Assumptions 6.2.2–6.2.4 hold. Then, for zn generated by Algorithm 5, we

have

E ∥zn − x∗∥2 ≤ Amin

1,

(
log(n)

n

) 2(β−1)
2β+d

α−2

 , (6.4)

where A > 0 is a numerical constant.

Proof outline. We use the definition of Algorithm 5 and strong convexity of f to obtain an upper
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bound for E[∥zk+1 − x∗∥2|zk], which depends on the bias term
∥∥E[gk,λ(zk)|zk]−∇f(zk)

∥∥ and

on the stochastic error term E
[∥∥gk,λ(zk)

∥∥2 |zk]. We control the bias and the stochastic error

terms uniformly over zk ∈ Θ, which is granted by Lemmas 6.7.3 and 6.7.4. This uniformity is

the reason why the bound (6.4) includes an extra logarithmic factor compared to the optimal

rate n−(β−1)/(2β+d) proved in Tsybakov (1990a).

We consider the logarithmic factor appearing in (6.4) as a price to pay for the fact that

our algorithm is adaptive to the marginal density of xi’s. Indeed, Tsybakov (1990a) consid-

ered estimators that can depend on the marginal density of xi’s and achieve the optimal rate

n−(β−1)/(2β+d), while Algorithm 5 is free of such dependence. Note also that our algorithm

can be realized in online mode with the data that arrive progressively. We conjecture that

the extra logarithmic factor can be eliminated if we estimate x∗ by the minimizer of the local

polynomial estimator of f . However, such a method needs the whole sample and cannot be

realized in online mode. It remains an open question whether there exists an algorithm com-

bining all the three advantages, that is, online realization, adaptivity to the marginal density

and convergence with the sharp optimal rate n−(β−1)/(2β+d).

In the following theorem, we provide a bound on the optimization error E [f(z̄n)− f∗],

where z̄n is the average of the outputs of Algorithm 5 throughout n iterations.

Theorem 6.3.2. Let Assumptions 6.2.2–6.2.4 hold. Then, for zn is generated by Algorithm 5,

we have

E [f(z̄n)− f∗] ≤ Amin

1,

(
log(n)

n

) 2(β−1)
2β+d

α−1

 ,

where z̄n = 1
n

∑n
k=1 zk, and A > 0 is a numerical constant.

Note that inequality (6.8) below and the strong convexity of f imply a minimax lower bound

for the optimization error with the rate n−2(β−1)/(2β+d). Hence, Theorem 6.3.2 shows that z̄n
achieves the minimax optimal rate with respect to the optimization error to within a logarithmic

factor. It is interesting to compare this result with the optimal rates for the optimization error

in the case of active design. As already discussed in the introduction, under the active design

for the same class of functions f as in Theorem 6.3.2, the dimension disappears from the

optimal rate – it upgrades to n−(β−1)/β, cf. Akhavan et al. (2020); Polyak and Tsybakov (1990).

On the other hand, under active design and the class of β-Hölder functions (without strong

convexity) the optimal rate for the optimization error deteriorates substantially and becomes

(n/ log n)−β/(2β+d), cf. Wang et al. (2018a). For all β > 2, this is worse as the rate under

passive design and strong convexity obtained in Theorem 6.3.2.
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Algorithm 6 Estimating the Minimum Value

Requires Algorithm 5, kernel K : [−1, 1]d → R, parameters hn = n
− 1

2β+d and λn = n
− β

2β+d .

1. Randomly split the data D in two equal parts D1 and D2

2. From the subsample D1, using the updates of Algorithm 5, construct z̄m.
3. Based on the second subsample D2, construct the estimator fn(z̄m) = U⊤(0)θ̂m:n,λ(z̄m)
Return fn(z̄m)

6.4 Estimating the minimum value of the regression function f

In this section, we apply the above results to estimate the minimum value f∗ = minx∈Θ f(x)
of function f that belongs to the class Fβ,α(L). Note that f(z̄n), which is analyzed in Theorem

6.3.2 is not an estimator for f∗, because it depends on the unknown f . The estimation of f∗

proceeds by estimating the minimizer and the value of the function separately on two subsam-

ples of equal size. Throughout this section, we assume that n is an even positive integer and

we denote m = n/2. First, we split the data into two subsamples D1 = {(x1, y1), . . . , (xm, ym)}
and D2 = {(xm+1, ym+1) . . . , (xn, yn)}. Then, we supply Algorithm 5 with D1 as the input, and

we construct z̄m = 1
m

∑m
k=1 zk, where zk is the update of Algorithm 5, at round k ∈ [m]. At

the next step, we estimate f(z̄n) for fixed z̄n to obtain an estimator for f∗. At this step we

can use any rate optimal estimator. To be specific, we take a regularized local polynomial

estimator defined in the same spirit as the estimator of the gradient (6.2). For λ, h > 0 we

define θ̂m:n,λ(z) = (Bm:n(z) + λI)−1Dm:n(z), where we introduced

Bm:n(z) =
2

nhd

n∑
i=m+1

U

(
xi − z
h

)
U⊤

(
xi − z
h

)
K

(
xi − z
h

)
,

Dm:n(z) =
2

nhd

n∑
i=m+1

yiU

(
xi − z
h

)
K

(
xi − z
h

)
.

Regularized local polynomial estimator of the function f at point z is defined as

fn(z) = U⊤(0)θ̂m:n,λ(z) . (6.5)

Minimum value estimation by local polynomial estimator is outlined in Algorithm 6.

Local polynomial estimator is known to be optimal (Stone, 1982), however, to the best

of our knowledge, all the rates considered in the literature are asymptotic and hold only for

sufficiently big n. Below we provide an upper bound for (6.5) which is non-asymptotic.

Theorem 6.4.1. Under Assumptions 6.2.2, 6.2.3, and 6.2.4, for any x ∈ Θ, we have

E
[
(fn(x)− f(x))2

]
≤
(
B2bias + Bvar

)
n
− 2β

2β+d .

Note that this theorem may be of independent interest since, to the best of our knowledge,
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the non-asymptotic rates of convergence of a regularized local polynomial estimator have not

been studied in the literature.

The following theorem gives the rate of convergence for the estimator Tn = fn(z̄m).

Theorem 6.4.2. Assume that f satisfies Assumptions 6.2.2, 6.2.3, and 6.2.4, and β ≥ 2.

Then, we have

E |Tn − f(x∗)| ≤ max
(
1, α−1

)
·

C1(log(n)/n)
2

4+d if β = 2 ,

C2n
− β

2β+d if β > 2 ,
(6.6)

where C1,C2 > 0 are numerical constants.

Proof. Using the fact that, for any fixed x the estimator fn(x) is measurable with respect to the

second half of the sample and z̄m is measurable with respect to its first half we get

E |Tn − f(x∗)| ≤ E|fn(z̄m)− f(z̄m)|+E|f(z̄m)− f(x∗)|

≤ E

[(
E
[
(fn(z̄m)− f(z̄m))2 |z̄m

]) 1
2

]
+E|f(z̄m)− f(x∗)| .

By using the fact that fn(·) and z̄m are independent, and by Theorems 6.3.2 and 6.4.1, we

deduce

E |Tn − f(x∗)| ≤ max
(
1, α−1

)C3n− β
2β+d + C4

(
log(n)

n

) 2(β−1)
2β+d


≤ max

(
1, α−1

)
·

C1(log(n)/n)
2

4+d if β = 2 ,

C2n
− β

2β+d if β > 2 ,

where C1,C2,C3,C4 > 0 are numerical constants.

Theorem 6.4.2 shows that estimation of f∗ for smooth and strongly convex functions under

passive design is realized with the same rate as function estimation. The lower bound (6.9)

below shows that the slow rate in (6.6) cannot be improved in a minimax sense and it corre-

sponds to the rate of a smooth function estimation at a fixed point. We show below that the

rate (n/ log n)−β/(2β+d) is optimal for β-smooth regression functions without strong convexity

assumption. It corresponds to the rates of function estimation in supremum norm. The strong

convexity assumption allows us to reduce the global function reconstruction problem to a sim-

pler, point estimation, leading to the rates without extra logarithmic factor. Note that the rate

n−β/(2β+d) cannot be improved even when x∗ is known as the function estimation at the point

of minimum is still required.

Note that, for β > 2, the convergence rate of Algorithm 1 used at the first stage to estimate

the minimizer is more than needed to achieve the rate (6.6). The optimal estimate of f∗ can be

obtained by estimating the minimizer at a slower rate, namely, n−β/(2β+d) for the optimization

risk. Therefore, it is not necessary to have zn as an estimator at the first step - it can be
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replaced by some suboptimal estimators. This could be beneficial considering the fact that

suboptimal algorithms may be computationally less costly.

In an active design setting, much faster rate can be obtained, see Table 6.1. Specifically,

f∗ can be estimated with the parametric rate Cn−1/2 where C > 0 is a constant, which is

independent of the dimension d and smoothness β for any β > 2 and all n large enough

(Akhavan et al., 2020). Clearly, the rate n−1/2 cannot be improved even by using the ideal but

non-realizable oracle that makes all queries at point x∗.

6.5 Lower bounds

The following theorem provides lower bounds for the minimax risks of arbitrary estimators

on the class Fβ,α(L). Let w(·) be a monotone non-decreasing function on [0,∞) such that

w(0) = 0 and w ̸≡ 0.

Theorem 6.5.1. Let x1, . . . ,xn be i.i.d. random vectors with a bounded Lebesgue density on

Rd. Assume that the random variables ξi are i.i.d. having a density pξ(·) with respect to the

Lebesgue measure on R such that

∃I∗ > 0, v0 > 0 :

∫ (√
pξ(u)−

√
pξ(u+ v)

)2

du ≤ I∗v
2 , (6.7)

for |v| ≤ v0. Then, for any β, α, L > 0 we have

inf
xn

sup
f∈Fβ,α(L)

Efw(n
β−1
2β+d ∥xn − x∗∥) ≥ c1, (6.8)

and

inf
fn

sup
f∈Fβ,α(L)

Efw(n
β

2β+d |fn − f∗|) ≥ c′1, (6.9)

where infxn and inffn denote the infimum over all estimators of the minimizer and over all

estimators of the minimum value of f , respectively, and c1 > 0, c′1 > 0 are constants that

depend only on β, α, L,Θ, I∗, v0, and w(·).

Condition (6.7) is rather general. It is satisfied, for example, for the Gaussian distribution

and also for a large class of regular densities, cf. Ibragimov and Khas’minskii (1981). The

lower bound (6.8) was proved in Tsybakov (1990a) under a more restrictive condition on the

density pξ.

The proof of Theorem 6.5.1 is given in Section 6.7. It is based on a reduction to the

problem of testing two hypotheses.

Considering the bounds (6.9), (6.8) with w(u) = u2 and w(u) = u, respectively, and com-

bining them with Theorems 6.3.1 and 6.4.2 we obtain that the estimator Tn is minimax optimal

for f∗, and zn is minimax optimal up to a logarithmic factor for x∗ on the class of functions

Fβ,α(L).
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In the next theorem, we provide a minimax lower bound on estimation of f∗ over the class

of β-Hölder functions Fβ(L) when there is no strong convexity assumption.

Theorem 6.5.2. Let x1, . . . ,xn be i.i.d. random vectors with a bounded Lebesgue density on

Rd, and let ξi be i.i.d. Gaussian random variables with zero mean and variance σ2. Assume

that Θ contains an open subset of Rd. Then, for any β > 0, L > 0, we have

inf
fn

sup
f∈Fβ(L)

Efw

((
n

log n

) β
2β+d

|fn − f∗|

)
≥ c3,

where inffn denotes the infimum over all estimators of the minimum value of f and c3 > 0 is a

constant that depends only on β, α, L,Θ, σ2, and w(·).

Theorem 6.5.2 implies that
(

n
logn

)− β
2β+d is the minimax rate of estimating the minimum

value f∗ on the class Fβ(L). Indeed, the matching upper bound with the rate
(

n
logn

)− β
2β+d is

obtained in a trivial way if we estimate f∗ by the minimum of any rate optimal (in supremum

norm) nonparametric estimator of f , for example, by the local polynomial estimator as in Stone

(1982).

Thus, if we drop the assumption of strong convexity, the minimax rate deteriorates only by

a logarithmic factor. It suggests that strong convexity is not a crucial advantage in estimation

of the minimum value of a function under the passive design.

6.6 Conclusion

In this paper, we have considered the problem of estimating the minimizer and the minimum

value of the regression function from the i.i.d data with a special focus on highly smooth and

strongly convex regression functions. We provide upper bounds for the proposed algorithms.

We show that the rates of estimation of the minimizer is the same as the rate for estimating

the gradient of the regression function. To estimate the minimum value we have used two-

stage procedure where in the first step we estimate the location of the minimum followed by

the estimation of the function value at the estimated in the first step point. We obtain optimal

nonparametric rates of convergence for our two-stage procedure.

An interesting open question is to make our algorithms adaptive to the unknown smooth-

ness β, that is, to develop a data-driven choice of the smoothing parameter h and of the regu-

larization parameter λ. When considering adaptation to the unknown smoothness of function

f , the optimal rates for estimation of f∗ will be presumably slower than the minimax rates by

a logarithmic factor.
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6.7 Proofs

In this section, we provide the proofs of Theorems 6.3.1, 6.4.1 and 6.5.1. Section 6.7 is

devoted to the proof of Theorem 6.3.1 on the upper bound for the Algorithm 1. Section 6.7

provides the proof of Theorem 6.4.1. In section 6.7, we prove Theorem 6.5.1 on the lower

bounds.

Proof of Theorem 6.3.1

For the proof of Theorem 6.3.1 we need some preliminary lemmas.

Lemma 6.7.1. For k ∈ [n], let gk,λ be defined by (6.3). Under Assumptions 6.2.2, 6.2.3, and

6.2.4, for any x ∈ Θ the following upper bound holds

∥∥E[gk,λ(x)]−∇f(x)
∥∥ ≤ Abias

(
log(k + 1)

k

) β−1
2β+d

,

where Abias > 0 is a numerical constant.

Proof. We introduce a shorter notation. For any k ∈ [n], and i ∈ [k], let

Mi,k(x) = U
(

xi − x
hk

)
U⊤

(
xi − x
hk

)
K

(
xi − x
hk

)
, and Ri,k(x) = U

(
xi − x
hk

)
K

(
xi − x
hk

)
.

Also, we use the notation Ck(x) = 1
khd

k

∑k
i=1Ri,k(x)f(xi), Dk(x) = 1

khd
k

∑k
i=1Ri,k(x)yi, and

note that E [Ck(x)] = E [Dk(x)].
To shorten the notation, setB = E[Bk(x)]. By lettingϕk = gk,λ(x)−h

−1
k

(
AB−1Bk(x)ck(f,x)

)
,

we can write

E [ϕk] = E
[
gk,λ(x)

]
− h−1

k Ack(f,x) = E
[
gk,λ(x)

]
−∇f(x) ,

where ck(f,x) =
(
h
|m(1)|
k Dm(1)

f(x), . . . , h|m
(S)|

k Dm(S)
f(x)

)⊤
. Also, note that by Assumption

6.2.2, E[gk,λ(x)] = E
[
h−1
k

(
AB−1

k,λ(x)Ck(x)
)]

. To conclude the proof, we need to provide an

upper bound for the term ∥E [ϕk]∥. Let

ψ1,k = h−1
k

(
AB−1Ck(x)

)
,

ψ2,k = h−1
k

(
A(B + λkI)

−1Ck(x)
)
.

Then we have

∥E[ϕk]∥ =
∥∥E [(ψ1,k − h−1

k

(
AB−1Bk(x)ck(f,x)

))
+
(
ψ2,k −ψ1,k

)
+
(
gk,λ(x)−ψ2,k

)]∥∥
≤
∥∥E[ψ1,k − h−1

k

(
AB−1Bk(x)ck(f,x)

)
]
∥∥︸ ︷︷ ︸

term I

+
∥∥E[ψ2,k −ψ1,k]

∥∥︸ ︷︷ ︸
term II

+
∥∥E[gk,λ(x)−ψ2,k]

∥∥︸ ︷︷ ︸
term III

.
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We provide adequately tight upper bounds for each of the terms above separately. For term I,

we can write

term I = h−1
k

∥∥∥∥∥AB−1E

[
1

khdk

k∑
i=1

Ri,k(x)
(
f(xi)−U⊤

(
xi − x
hk

)
ck(f,x)

)]∥∥∥∥∥
≤ h−1

k

∥∥AB−1
∥∥

op

∥∥∥∥∥E
[

1

khdk

k∑
i=1

Ri,k(x)
(
f(xi)−U⊤

(
xi − x
hk

)
ck(f,x)

)]∥∥∥∥∥ .

Since ∥A∥op ≤ 1, by Lemma 6.7.8(iii), we deduce that
∥∥AB−1

∥∥
op ≤ λ−1

min. Then we can write

term I ≤ h−1
k λ−1

min

(
1

khdk

k∑
i=1

E

[∥∥∥∥Ri,k(x)
(
f(xi)−U⊤

(
xi − x
hk

)
ck(f,x)

)∥∥∥∥]
)

.

Since by Assumption 6.2.3, f ∈ Fβ(L) for any i ∈ [k] we have

|f(xi)−U⊤
(

xi − x
hk

)
ck(f,x)| ≤ L ∥x − xi∥β ,

and we can write

term I ≤ Lh−1
k λ−1

min

(
1

khdk

k∑
i=1

E
[
∥Ri,k(x)∥ ∥x − xi∥β

])

= Lh−d−1
k λ−1

min

∫
Rd

∥x − u∥β
∥∥∥∥U (u− x

hk

)
K

(
u− x
hk

)∥∥∥∥ p(u) du
= Lhβ−1

k λ−1
min

∫
Rd

∥w∥β ∥U(w)K(w)∥ p(x + hkw) dw ≤ A1h
β−1
k ,

where we introduced A1 = Lλ−1
minpmaxκβ, and κβ =

∫
Rd ∥u∥β ∥U(u)K(u)∥ du. For term II, we

deduce that

term II = h−1
k

∥∥∥A((B + λkI)
−1 −B−1

)
E [Ck(x)]

∥∥∥
≤ h−1

k λk ∥A∥op

∥∥B−1
∥∥

op

∥∥∥(B + λkI)
−1
∥∥∥

op
E [∥Ck(x)∥] .

By Assumption 6.2.3(iii), we have supx∈Θ′ f(x) ≤M . Also, E [∥Ck(x)∥] ≤ E [supx∈Θ ∥Ck(x)∥],
where by Lemma 6.7.8(ii) we get E [supx∈Θ ∥Ck(x)∥] ≤ Mpmaxν1,1. Moreover, by Lemma

6.7.8(iii), we can write
∥∥B−1

∥∥
op

∥∥∥(B + λkI)
−1
∥∥∥

op
≤ λ−2

min. Therefore, we deduce that

term II ≤ A2h
−1
k λk ,
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with A2 =Mpmaxν1,1λ
−2
min. Finally, we need to bound term III

term III ≤ h−1
k

∥∥∥∥E[A(B−1
k,λ(x)− (E[Bk,λ(x)])−1

)
(Ck(x)−E [Ck(x)])

]∥∥∥∥
+ h−1

k

∥∥∥∥E[A(B−1
k,λ(x)− (E[Bk,λ(x)])−1

)
E [Ck(x)]

]∥∥∥∥
≤ h−1

k E

[∥∥∥B−1
k,λ(x)− (E[Bk,λ(x)])−1

∥∥∥
op

∥Ck(x)−E [Ck(x)]∥
]

+ h−1
k E

[∥∥∥B−1
k,λ(x)− (E[Bk,λ(x)])−1

∥∥∥
op

]
E

[
sup
x∈Θ

∥Ck(x)∥
]
.

For the first term on the r.h.s., we use Lemma 6.7.14, and we get

term III ≤ A3k
−1h−d−1

k + h−1
k E

[∥∥∥Bk,λ(x)−1 − (E[Bk,λ(x)])−1
∥∥∥

op

]
E

[
sup
x∈Θ

∥Ck(x)∥
]
,

where A3 > 0 is the numerical constant that appears in Lemma 6.7.14. By invoking Lemma

6.7.8(i), the second term on the r.h.s. can be bounded by the following expression

A4h
−1
k E

[
∥Bk,λ(x)∥−1

op ∥Bk,λ(x)− (E[Bk,λ(x)])∥op

]
≤

A4h
−1
k

(
E
[
∥Bk,λ(x)∥−2

op

]
E
[
∥Bk,λ(x)− (E[Bk,λ(x)])∥2op

]) 1
2
,

where for the last display we used the Cauchy-Schwarz inequality and we introduced A4 =

Mpmaxν1,1λ
−1
min. Now, by using Jensen’s inequality and Lemma 6.7.10, we get

term III ≤ A3k
−1h−d−1

k + A4k
− 1

2h
− d

2
−1

k ≤ A5k
− 1

2h
− d

2
−1

k ,

where A5 = 3A3 + A4. By combining all of these bounds we obtain

∥∥E[gk,λ(x)]−∇f(x)
∥∥ ≤ A6

(
hβ−1
k + h−1

k λk + h
−1− d

2
k k−

1
2

)
, (6.10)

where A6 = max (A1,A2,A5). Finally, by substituting hk =
(
log(k+1)

k

) 1
2β+d , and λk =

(
log(k+1)

k

) β
2β+d ,

we deduce that

∥∥E[gk,λ(x)]−∇f(x)
∥∥ ≤ Abias

(
log(k + 1)

k

) β−1
2β+d

,

where Abias = 3A6.

The following lemma provides a bound of the variance uniformly over Θ.

Lemma 6.7.2. Let gk,λ be defined by Algorithm 1, and let Assumptions 6.2.2, 6.2.3, and 6.2.4
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hold. Then, we have

E

[
sup
x∈Θ

∥∥gk,λ(x)−E
[
gk,λ(x)

]∥∥2] ≤ Avar

(
log(k + 1)

k

) 2(β−1)
2β+d

,

where Avar > 0 is a numerical constant.

Proof. Let Gk(x) = 1
khd

k

∑k
i=1Ri,k(x)ξi, and recall that Ck(x) = 1

khd
k

∑k
i=1Ri,k(x)f(xi). Then,

we have

E

[
sup
x∈Θ

∥∥gk,λ(x)−E [gk(x)]
∥∥2] ≤ 2E

[
sup
x∈Θ

∥∥∥h−1
k AB−1

k,λ(x)Gk(x)
∥∥∥2]︸ ︷︷ ︸

term I

+ 2E

[
sup
x∈Θ

∥∥∥h−1
k AB−1

k,λ(x)Ck(x)−E
[
h−1
k AB−1

k,λ(x)Ck(x)
]∥∥∥2]︸ ︷︷ ︸

term II

.

For term I, we have

term I ≤ 4h−2
k E

[
sup
x∈Θ

∥∥∥A(B−1
k,λ(x)− (E[Bk,λ(x)])−1

)
Gk(x)

∥∥∥2]︸ ︷︷ ︸
term III

+ 4h−2
k

∥∥(E[Bk,λ(x)])−1
∥∥2

op E

[
sup
x∈Θ

∥Gk(x)∥2
]

︸ ︷︷ ︸
term IV

.

For term III, by using the property of Assumption 6.2.2, we can write

term III ≤ 4σ2λ−2
minλ

−2
k h−2

k E

[
sup
x∈Θ

∥Bk,λ(x)−E[Bk,λ(x)]∥2op sup
x∈Θ

∥G(x)∥2
]
.

Now, by invoking the Cauchy-Schwarz inequality we get

term III ≤ 4σ2λ−2
minλ

−2
k h−2

k

(
E

[
sup
x∈Θ

∥Bk,λ(x)−E[Bk,λ(x)]∥4op

]
E

[
sup
x∈Θ

∥G(x)∥4
]) 1

2

Using Lemmas 6.7.9 and 6.7.11, we obtain

term III ≤ A1λ
−2
k k−2h−2d−2

k log(k + 1)2 ,

where A1 > 0 is a numerical constant. Now, by using the inequality k ≥ λ−2
k h−d

k log(k + 1), we

can write

term III ≤ A1k
−1h−d−2

k log(k + 1) .
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For term IV, we have

term IV ≤ 4σ2λ−2
mink

−1h−2d−2
k E

[
sup
x∈Θ

∥R1,k∥2
]
≤ A2k

−1h−d−2
k ,

where the last inequality is obtained by Lemma 6.7.8(i), with A2 = 4σ2λ−2
minpmaxν1,2. Therefore,

we deduce that

term I ≤ A3k
−1h−d−2

k ,

with A3 = A1 + A2. We continue the proof by providing an adequately tight upper bound for

term II.

term II ≤ 4h−2
k E

[
sup
x∈Θ

∥∥∥B−1
k,λ(x)− (E[Bk,λ(x)])−1

∥∥∥2
op

∥Ck(x)∥2
]

︸ ︷︷ ︸
term V

+ 4h−2
k

∥∥(E[Bk,λ(x)])−1
∥∥2

op E

[
sup
x∈Θ

∥Ck(x)−E[Ck(x)]∥2
]

︸ ︷︷ ︸
term VI

.

Similar to term III, for term V we have

term V ≤ 4M2λ−2
minλ

−2
k k−1h−d−2

k log(k + 1)
(
k−3h−3d

k pmaxν1,4 + k−2h−2d
k p2maxν

2
1,2

) 1
2 ≤ A4k

−1h−d−2
k ,

where A4 = 4M2λ−2
min(pmaxν1,4+p

2
maxν

2
1,2)

1
2 . Finally, for term VI, by Lemma 6.7.13 we can write

term VI ≤ A5k
−1h−d−2

k log(k + 1) ,

where A5 > 0 is a numerical constant. Thus, we deduce that

term II ≤ A6k
−1h−d−2

k log(k + 1) ,

with A6 = A4 + A5. We conclude the proof by letting Avar = A3 + A6, and substituting the

parameters hk =
(
log(k+1)

k

) 1
2β+d , and λk =

(
log(k+1)

k

) β
2β+d .

Lemma 6.7.3. Let gk,λ be defined by Algorithm 1, and let Assumptions 6.2.2, 6.2.3, and 6.2.4

hold. Then, we have

E

[
sup
x∈Θ

∥∥gk,λ(x)−∇f(x)]
∥∥2] ≤ Aerror

(
log(k + 1)

k

) 2(β−1)
2β+d

,

where Aerror > 0 is a numerical constant.
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Proof. We can write

E

[
sup
x∈Θ

∥∥gk,λ(x)−∇f(x)]
∥∥2] ≤ E

[
sup
x∈Θ

∥∥gk,λ(x)−E [gk,λ(x)]
∥∥2]+ sup

x∈Θ
∥E [gk,λ(x)]−∇f(x)∥2 .

We conclude the proof by using Lemmas 6.7.1 and 6.7.2, and letting Aerror = A2bias + Avar.

Lemma 6.7.4. Let gk,λ be defined by Algorithm 1, and let Assumptions 6.2.2, 6.2.3, and 6.2.4

hold. Then, we have

E

[
sup
x∈Θ

∥∥gk,λ(x)
∥∥2] ≤ Asmk

2+d
2β+d log(k + 1)

2(β−1)
2β+d ,

where Asm > 0 is a numerical constant.

Proof. Let Gk(x) = 1
khd

k

∑k
i=1Ri,k(x)ξi, and recall that Ck(x) = 1

khd
k

∑k
i=1Ri,k(x)f(xi). By the

definition of gk,λ, we can write

E[sup
x∈Θ

∥gk(x)∥
2] ≤ h−2

k E

[
sup
x∈Θ

∥Bk,λ(x)∥−2
op ∥Dk(x)∥2

]
≤ 2h−2

k E

[
sup
x∈Θ

∥Bk,λ(x)∥−2
op ∥Ck(x)∥2

]
︸ ︷︷ ︸

term I

+2h−2
k E

[
sup
x∈Θ

∥Bk,λ(x)∥−2
op ∥Gk(x)∥2

]
︸ ︷︷ ︸

term II

,

where the last inequality uses the fact that (u+v)2 ≤ 2u2+2v2, for any u, v ≥ 0. Now, for term

I, we can write

term I ≤ 4h−2
k

(
E

[
sup
x∈Θ

∥Bk,λ(x)∥−2
op sup

x∈Θ
∥Ck(x)−E [Ck(x)]∥2

])
︸ ︷︷ ︸

term III

+ 4h−2
k

(
E

[
sup
x∈Θ

∥Bk,λ(x)∥−2
op

]
E

[
sup
x∈Θ

∥Ck(x)∥2
])

︸ ︷︷ ︸
term IV

,

To provide an upper bound for term III, we use the Cauchy-Schwarz inequality, which yields

term III ≤ 4h−2
k

(
E

[
sup
x∈Θ

∥Bk,λ(x)∥−4
op

]
E

[
sup
x∈Θ

∥Ck(x)−E [Ck(x)]∥4
]) 1

2

≤ A1k
−1h−d−2

k log(k + 1) ,

where we have used Lemmas 6.7.10 and 6.7.13, with A1 > 0 being a numerical constant. For

term IV, by invoking Lemmas 6.7.8(i) and 6.7.10, we deduce that

term IV ≤ A2h
−d−2
k ,

where A2 > 0 is a numerical constant. Finally, it is enough to provide an upper bound for term

II. We have
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term II ≤ 2h−2
k

(
E

[
sup
x∈Θ

∥Bk,λ(x)∥−4
op

]
E
[
∥Gk(x)∥4

]) 1
2

,

where the last inequality is due to Cauchy-Schwarz. Thanks to Lemmas 6.7.9 and 6.7.11, we

can write

term II ≤ A3k
−1h−d−2

k log(k + 1) .

Now it is straightforward to see that the sum of the terms is dominated by Asmh
−d−2
k log(k+

1), where Asm = A1+A2+A3. By substituting hk =
(
log(k+1)

k

) 1
2β+d , we conclude the proof.

Now, we are ready to proof Theorem 6.3.1.

Proof of Theorem 6.3.1. By the definition of the algorithm and the contracting property of the

Euclidean projection, for any k ∈ [n], we have

∥zk+1 − x∗∥2 ≤ ∥zk − x∗∥2 − 4

αk
(zk − x∗)⊤E

[
gk,λ(zk)|zk

]︸ ︷︷ ︸
term I

+
4

α2k2
E
[∥∥gk,λ(zk)

∥∥2 |zk] .

By adding and subtracting ∇f(zn), for term I we get

E[δk+1|zk] ≤ δk −
4

αk
⟨zk − x∗,∇f(zk)⟩+

4

αk
∥zk − x∗∥

∥∥E[gk,λ(zk)|zk]−∇f(zk)
∥∥

+
4

α2k2
E
[∥∥gk,λ(zk)

∥∥2 |zk] ,

(6.11)

where δk = ∥zk − x∗∥2. Since f is an α-strongly function, we have

αδk ≤ ⟨zk − x∗,∇f(zk)⟩ . (6.12)

Combining (6.11) and (6.12), yields

E[δk+1|zk] ≤
(
1− 4

k

)
δk +

4

αk
∥zk − x∗∥

∥∥E[gk,λ(zk)|zk]−∇f(zk)
∥∥︸ ︷︷ ︸

term II

+
4

α2k2
E
[∥∥gk,λ(zk)

∥∥2 |zk] .

(6.13)

Note that for any a, b ∈ R and γ > 0, we have 2a · b ≤ γa2 + b2

γ . For term II in (6.13), we can

write

∥zk − x∗∥
∥∥E[gk,λ(zk)|zk]−∇f(zk)

∥∥ ≤ 3α

4
δk +

1

3α

∥∥E[gk,λ(zk)|zk]−∇f(zk)
∥∥2 .
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Plugging in the above upper bound for term II, and taking the total expectation yields

δ̃k+1 ≤
(
1− 1

k

)
δ̃k +

1

3α2k
E
[∥∥E[gk,λ(zk)|zk]−∇f(zk)

∥∥2]+ 4

α2k2
E
[∥∥gk,λ(zk)

∥∥2]
≤
(
1− 1

k

)
δ̃k +

1

3α2k
E

[
sup
x∈Θ

∥∥gk,λ(x)−∇f(x)
∥∥2]+ 4

α2k2
E

[
sup
x∈Θ

∥∥gk,λ(x)
∥∥2] ,

where δ̃k = E[δk], and form first to second inequality we used Jensen’s inequality. By invoking

Lemmas 6.7.3 and 6.7.4, we deduce that

δ̃k+1 ≤
(
1− 1

k

)
δ̃k + A1k

−1− 2(β−1)
2β+1 log(k + 1)

2(β−1)
2β+d α−2 ,

where A1 = Aerror/3 + 4Asm, is a numerical constant. Finally, by using (Akhavan et al., 2020,

Lemma D.1.) we conclude the proof:

E ∥zn − x∗∥2 ≤
(
4diam(Θ)

n
+ A2n

− 2(β−1)
2β+d α−2

)
log(n)

2(β−1)
2β+d ,

where A2 =
4β+4
d+2 A1, diam(Θ) = supx,y∈Θ ∥x − y∥2 , and in order to obtain the last inequality

we used the fact that log(n+ 1) ≤ log(n) for n ≥ 2.

Proof of Theorem 6.3.2. By the definition of Algorithm 1, we have ∥zk+1 − x∗∥2 ≤
∥∥zk − ηkgk,λ(zk)− x∗∥∥2.

Therefore, we can write

⟨gk,λ(zk), zk − x∗⟩ ≤ ∥zk − x∗∥2 − ∥zk+1 − x∗∥2

2ηk
+
ηk
2

∥∥gk,λ(zk)
∥∥2 . (6.14)

On the other hand, by Assumption 6.2.3(iii) we have

f(zk)− f∗ ≤ ⟨∇f(zk), zk − x∗⟩ − α

2
∥zk − x∗∥2 . (6.15)

Combining (6.14) and (6.15) gives

E [f(zk)− f∗|zk] ≤
∥∥E [gk,λ(zk)−∇f(zk)|zk

]∥∥ ∥zk − x∗∥+ 1

2ηk
E [ak − ak+1|zk]

+
ηk
2
E
[∥∥gk,λ(zk)

∥∥2 |zk]− α

2
ak ,

where ak = ∥zk − x∗∥2. Using the inequality ab ≤ a2 + b2 implies

E [f(zk)− f∗|zk] ≤
2

α

∥∥E [gk,λ(zk)−∇f(zk)|zk
]∥∥2 + 1

2ηk
E [ak − ak+1|zk]

+
ηk
2
E
[∥∥gk,λ(zk)

∥∥2 |zk]− α

4
ak

≤ 2

α
E
[∥∥gk,λ(zk)−∇f(zk)

∥∥2 |zk]+ 1

2ηk
E [ak − ak+1|zk]

+
ηk
2
E
[∥∥gk,λ(zk)

∥∥2 |zk]− α

4
ak ,
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where the last inequality is due to Jensen’s inequality. Taking total expectation from both sides

of the above inequality and setting rk = E
[
∥zk − x∗∥2

]
gives

E [f(zk)− f∗] ≤ 2

α
E

[
sup
x∈Θ

∥∥gk,λ(x)−∇f(x)
∥∥2]+ 1

2ηk
(rk − rk+1)

+
ηk
2
E

[
sup
x∈Θ

∥∥gk,λ(x)
∥∥2]− α

4
rk ,

Substituting ηk = 2
αk and using Lemmas 6.7.3 and 6.7.4 implies

E [f(zk)− f∗] ≤ αk

4
(rk − rk+1)−

α

4
rk + A1

(
log(k + 1)

k

) 2(β−1)
2β+d

α−1 ,

where A = 4Aerror + Asm. Summing both sides form 1 to n yields

n∑
k=1

E [f(zk)− f∗] ≤ An
2+d
2β+d log(n)

2(β−1)
2β+d α−1 ,

where A = 4β+2d
2+d A1. In order to obtain the last inequality we used the fact that

∑n
k=1 k

− 2(β−1)
2β+d ≤

2β+d
2+d n

2+d
2β+d , and log(n+ 1) ≤ 2 log(n) for n ≥ 2. We conclude the proof by using the convexity

of f .

Proof of Theorem 6.4.1

Lemma 6.7.5. Under Assumption 6.2.2, 6.2.3, and 6.2.4, for any x ∈ Θ we have

|E [fn(x)]− f(x)| ≤ Bbiasn
− β

2β+d ,

where Bbias > 0 is a numerical constant.

Proof. Let B = E[Bm:n(x)], and ϕn = fn(x)−U⊤(0)B−1Bm:n(x)cn(f,x). It is straightforward

to see that

E [ϕn] = E [fn(x)]−U⊤(0)cn(f,x) = E [fn(x)]− f(x) .

Therefore, we need to provide an upper bound for the term |E [ϕn] |. Let

ψ1,n = U⊤(0)B−1Cm:n(x) ,

ψ2,n = U⊤(0) (B + λnI)
−1Cm:n(x) ,
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where Cm:n(x) = 2
nhd

n

∑n
k=m+1Rk(x)f(xk). Now, we can write

|E[ϕn| ≤ |E[ψ1,n − h−1
n

(
U⊤(0)B−1Bm:n(x)cn(f,x)

)
]|︸ ︷︷ ︸

term I

+ |E[ψ2,n −ψ1,n|︸ ︷︷ ︸
term II

+ |E[fn(x)−ψ2,n]|︸ ︷︷ ︸
term III

.

By following similar steps as in the proof of Lemma 6.7.1, we get

term I ≤ B1h
β
n , term II ≤ B2λn and term III ≤ B3h

− d
2

n n−
1
2 ,

where B1,B2,B3 > 0, are numerical constants. Therefore, we deduce that

|E[ϕn]| ≤ B4

(
hβn + λn + h

− d
2

n n−
1
2

)
,

with B4 = max (B1,B2,B3). We conclude the proof by substituting hn = n
− 1

2β+d , and λn =

n
− β

2β+d .

Lemma 6.7.6. Let Assumptions 6.2.2, 6.2.3, and 6.2.4 hold. Then, for any x ∈ Θ we have

E
[
(fn(x)−E [fn(x)])2

]
≤ Bvarn

− 2β
2β+d ,

where Bvar > 0 is a numerical constant.

Proof. Similar to the proof of Lemma 6.7.4, let Gn(x) = 1
nhd

n

∑n
k=1Rk(x)ξk, and Cn(x) =

1
nhd

n

∑n
k=1Rk(x)f(xk). Then, we have

E[(fn(x)−E [fn(x)])2] ≤ 2E

[∥∥∥B−1
n,λ(x)Gn(x)

∥∥∥2]︸ ︷︷ ︸
term I

+2E

[∥∥∥B−1
n,λ(x)Cn(x)−E

[
B−1

n,λ(x)Cn(x)
]∥∥∥2]︸ ︷︷ ︸

term II

.

For term I, we can write

term I ≤ 4E

[∥∥∥(B−1
n,λ(x)− (E[Bn,λ])

−1
)
Gn(x)

∥∥∥2]︸ ︷︷ ︸
term III

+4 ∥E[Bn,λ(x)]∥−2E
[
∥Gn(x)∥2

]
︸ ︷︷ ︸

term IV

.

By Assumption 6.2.2, for term III we get

term III ≤ 4σ2λ−2
minλ

−2
n E

[
∥Bn,λ(x)−E[Bn,λ(x)]∥2op

(
n−2h−2d

n

n∑
k=1

∥Rk(x)∥2
)]

.

Now, by using the Cauchy-Schwarz inequality, we can write

term III ≤ 4σ2λ−2
minλ

−2
n

E
[
∥Bn,λ(x)−E[Bn,λ(x)]∥4op

]
E

(n−2h−2d
n

n∑
k=1

∥Rk(x)∥2
)2
 1

2

.
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Using Lemma 6.10 implies

term III ≤ 4σ2λ−2
minλ

−2
n n−1h−d

n

E

(n−2h−2d
n

n∑
k=1

∥Rk(x)∥2
)2
 1

2

≤ 4σ2λ−2
minλ

−2
n n−1h−d

n

(
n−4h−4d

n

( n∑
k=1

E[∥Rk(x)∥4] +
n∑

j,k=1

E[∥Rj(x)∥2]E[∥Rk(x)∥2]
)) 1

2

.

By invoking Lemma 6.7.8(i) and the fact that 1 ≤ nhn we deduce that

term III ≤ 4σ2λ−2
minλ

−2
n n−2h−2d

n

(
pmaxν1,4 + (pmaxν1,2)

2

) 1
2

.

Now, by using the inequality n ≥ λ−2
n h−d

n we get

term III ≤ B1n
−1h−d

n ,

where B1 = 4σ2λ−2
min(pmaxν1,4 + (pmaxν1,2)

2)
1
2 . For term IV, we can write

term IV ≤ 4σ2λ−2
minn

−1h−2d
n E

[
∥Rn(x)∥2

]
≤ B2n

−1h−d
n ,

where the last inequality is a result of Lemma 6.7.8(i) with B2 = 4σ2λ−2
minpmaxν1,2 as a numerical

constant. For term II, we have

term II ≤ 4E

[∥∥∥B−1
n,λ(x)− (E[Bn,λ(x)])−1

∥∥∥2
op

∥Cn(x)∥2
]

︸ ︷︷ ︸
term V

+ 4
∥∥(E[Bn,λ(x)])−1

∥∥2
op E

[
∥Cn(x)−E[Cn(x)]∥2

]
︸ ︷︷ ︸

term VI

.

term V ≤ 4M2λ−2
minλ

−2
n k−1h−d

n

(
n−3h−3d

n pmaxν1,4 + n−2h−2d
n p2maxν

2
1,2

) 1
2 ≤ B3n

−1h−d
n ,

where B3 = 4n2λ−2
min(pmaxν1,2 + (pmaxν1,2)

2)
1
2 . For term VI, by using Lemma 6.7.12, we have

term VI ≤ B4n
−1h−d

n ,

with B4 > 0 as a numerical constant. Finally, by combing all of these bounds, we get

E
[
(fn(x)−E [fn(x)])2

]
≤ Bvarn

−1h−d
n ,

where we introduced Bvar = B1 + B2 + B3 + B4. We conclude the proof by substituting hn =

n
− 1

2β+d .
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Proof of Theorem 6.4.1. We have

E
[
(fn(x)− f(x))2

]
= (E [fn(x)]− f(x))2 +E

[
(fn(x)−E [fn(x)])2

]
.

We conclude the proof by using Lemmas 6.7.5 and 6.7.6.

Proof of Theorem 6.5.1

We first prove (6.9). We apply the scheme of proving lower bounds for estimation of functionals

described in Section 2.7.4 in Tsybakov (2009). Moreover, we use its basic form when the

problem is reduced to testing two simple hypotheses (that is, the mixture measure µ from

Section 2.7.4 in Tsybakov (2009) is the Dirac measure). The functional we are estimating is

F (f) = f∗ = minx∈Θ f(x), where Θ is a sufficiently large Euclidean ball centered at 0. We

choose the two hypotheses as the probability measures P⊗n
1 and P⊗n

2 , where Pj stands for

the distribution of a pair (xi, yi) satisfying (6.1) with f = fj , j = 1, 2. For r > 0, δ > 0, we set

f1(x) = α(1 + δ)∥x∥2/2, f2(x) = f1(x) + rhβnΦ

(
x − x(n)

hn

)
,

where hn = n−1/(2β+d), x(n) = (hn/8, 0, . . . , 0) ∈ Rd and Φ(x) =
∏d

i=1Ψ(xi) with

Ψ(t) =

∫ t

−∞
(η(y + 1/2)− η(y)) dy,

where η(·) is an infinitely many times differentiable function on R1 such that

η(x) ≥ 0, η(x) =

0, x /∈ [0, 1/2]

1, x ∈ [1/8, 3/8]
.

It is shown in Tsybakov (1990a) that if r is small enough the functions f1 and f2 are α-strongly

convex and belong to Fβ(L). Thus, fj ∈ Fβ,α(L), j = 1, 2. It is also not hard to check (cf.

Tsybakov (1990a)) that for the function η1(y) = η(y + 1/2)− η(y) we have

η1

(
−rΨ

d−1(0)hβ−2
n

α(1 + δ)
− 1

8

)
= 1

when r < α(1+δ)/4. Using this remark we get that the minimizers x∗
j = argminx∈Θ fj(x) have

the form

x∗
1 = (0, 0, . . . , 0) and x∗

2 =

(
−rΨ

d−1(0)hβ−1
n

α(1 + δ)
, 0, . . . , 0

)
.
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The values of the functional F on f1 and f2 are F (f1) = 0 and

F (f2) = f2(x∗
2)

=
r2Ψ2(d−1)(0)

2α(1 + δ)
h2(β−1)
n + rΨd−1(0)Ψ

(
−rΨ

d−1(0)hβ−2
n

α(1 + δ)
− 1

8

)
hβn

≥ r2Ψ2(d−1)(0)

2α(1 + δ)
h2(β−1)
n + rΨd−1(0)Ψ(−1/4)hβn (for r small enough)

≥ rΨd−1(0)Ψ(−1/4)hβn.

Here, Ψ(0) =
∫∞
−∞ η(y) dy > 0 and Ψ(−1/4) =

∫ 1/4
−∞ η(y) dy > 0.

Note that assumption (i) of Theorem 2.14 in Tsybakov (2009) is satisfied with β0 = β1 = 0,

c = 0 and s = rΨd−1(0)Ψ(−1/4)hβn/2. Therefore, by Theorem 2.15 (ii) in Tsybakov (2009),

(6.9) will be proved if we show that

H2
(
P⊗n
1 , P⊗n

2

)
≤ a < 2, (6.16)

where H2 (P,Q) denotes the Hellinger distance between the probability measures P and Q.

Using assumption (6.7) we obtain

H2
(
P⊗n
1 , P⊗n

2

)
= 2

(
1−

(
1− H2(P1, P2)

2

)n)
≤ nH2(P1, P2) (as (1− x)n ≥ 1− xn, x ∈ [0, 1])

= n

∫ (√
pξ(y)−

√
pξ (y + (f1(x)− f2(x)))

)2

p(x) dxdy

≤ nI∗

∫
(f1(x)− f2(x))2 p(x) dx

= nI∗r
2h2β+d

n

∫
Φ2(u)p

(
x(n) + uhn

)
du

≤ pmaxI∗r
2

∫
Φ2(u) du, for r ≤ v0,

where pmax is the maximal value of the density p(·) of xi. Choosing r ≤
√
a/
(
pmaxI∗

∫
Φ2(u) du

)
,

with a < 2 we obtain (6.16). This completes the proof of (6.9).

In order to prove (6.8), it suffices to use the same construction of two hypotheses as

above, apply the Hellinger version of Theorem 2.2 from Tsybakov (2009), and to notice that

∥x∗
1 − x∗

2∥ ≥ cn−(β−1)/(2β+d), where c > 0 is a constant.

Proof of Theorem 6.5.2

We apply again the scheme of proving lower bounds for estimation of functionals from Sec-

tion 2.7.4 in Tsybakov (2009). However, we use a different construction of the hypotheses.

Without loss of generality, assume that n ≥ 2, that Θ contains the cube [0, 1]d. Define
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hn = (n/ log(n))−1/(2β+d), N = (1/hn)
d, and assume without loss of generality that N is

an integer. For r > 0, we set

fj(x) = −rhβnΦ

(
x − t(j)

hn

)
, j = 1, . . . , N,

where Φ(x) =
∏d

i=1Ψ(xi), where Ψ(·) is an infinitely many times differentiable function on R
taking positive values on its support [−1/2, 1/2], and we denote by t(1), . . . , t(N) the N points

of the equispaced grid on [0, 1]d with step hn over each coordinate, such that the supports of

all fj ’s are included in [0, 1]d and are disjoint. It is not hard to check that for r small enough all

the functions fj , j = 1, . . . , N , belong to Fβ(L).

We consider the product probability measures P⊗n
0 and P⊗n

1 , . . . P⊗n
N , where P0 stands

for the distribution of a pair (xi, yi) satisfying (6.1) with f ≡ 0, and Pj stands for the dis-

tribution of (xi, yi) satisfying (6.1) with f = fj . Consider the mixture probability measure

Pµ = 1
N

∑N
j=1 P

⊗n
j , where µ denotes the uniform distribution on {1, . . . , N}.

Note that, for each j = 1, . . . , N , we have F (fj) = −rhβnΦmax, where F (f) = f∗ =

minx∈Θ f(x), and Φmax > 0 denotes the maximal value of function Φ(·). Let

χ2(P ′, P ) =

∫
( dP ′/dP )2 dP − 1

denote the chi-square divergence between two mutually absolutely continuous probability

measures P ′ and P . We will use the following lemma, which is a special case of Theorem 2.15

in Tsybakov (2009).

Lemma 6.7.7. Assume that there exist v > 0, b > 0 such that F (fj) = −2v for j = 1, . . . , N

and χ2(Pµ, P
⊗n
0 ) ≤ b, Then

inf
f̂n

sup
j=0,1,...,N

P⊗n
j

(
|f̂n − F (fj)| ≥ v

)
≥ 1

4
exp(−b),

where inf f̂n denotes the infimum over all estimators.

In our case, the first condition of this lemma is satisfied with v = rhβnΦmax/2. We now

check that the second condition χ2(Pµ, P
⊗n
0 ) ≤ b holds with some constant b > 0 independent

of n. Using a standard representation of the chi-square divergence of a Gaussian mixture from

the pure Gaussian noise measure (see, for example, Lemma 8 in Carpentier et al. (2019)) we
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obtain

χ2(Pµ, P
⊗n
0 ) =

1

N2

N∑
j,j′=1

E exp

(∑n
i=1 fj(xi)fj′(xi)

σ2

)
− 1

=
1

N2

N∑
j,j′=1

E exp

(∑n
i=1 fj(xi)fj′(xi)

σ2

)
− 1

=
1

N2

N∑
j=1

E exp

(∑n
i=1 f

2
j (xi)

σ2

)
+
N(N − 1)

N2
− 1

≤ 1

N2

N∑
j=1

E exp

(∑n
i=1 f

2
j (xi)

σ2

)

=
1

N2

N∑
j=1

[
E exp

(
f2j (x1)

σ2

)]n
,

where the equality in the third line is due to the fact that if j ̸= j′ then fj and fj′ have disjoint

supports and thus fj(xi)fj′(xi) = 0. Note that maxx∈Rd f2j (x) ≤ r2Φ2
max, for all j = 1, . . . , N .

Choose r such that r ≤ σ/Φmax. Then
f2
j (x1)

σ2 ≤ 1, and using the elementary inequality

exp(u) ≤ 1 + 2u, u ∈ [0, 1], we obtain that exp
(

f2
j (x1)

σ2

)
≤ 1 +

2f2
j (x1)

σ2 for all j = 1, . . . , N .

Substituting this bound in the last display and noticing that E(f2j (x1)) =
∫
f2j (x)p(x)dx ≤

pmaxr
2h2β+d

n

∫
Φ2(x) dx = c∗

logn
n , where c∗ = pmaxr

2
∫
Φ2(x) dx, we obtain:

χ2(Pµ, P
⊗n
0 ) ≤ 1

N

[
1 +

2E(f2j (x1))

σ2

]n
≤ 1

N

[
1 +

2c∗ log n

σ2n

]n
≤ 1

N
exp

(
2c∗ log n

σ2

)
=
nc0

N
,

where c0 = 2c∗/σ
2 = 2pmaxr

2
∫
Φ2(x) dx/σ2. Since N = (n/ log n)

d
2β+d we finally get

χ2(Pµ, P
⊗n
0 ) ≤ n

c0− d
2β+d (log n)

d
2β+d .

By choosing r small enough to have c0 ≤ d
2(2β+d) we obtain that χ2(Pµ, P

⊗n
0 ) ≤

(
logn√

n

) d
2β+d ≤(

log 2√
2

) d
2β+d

:= b. Thus, the second condition of Lemma 6.7.7 holds if r is chosen as a

small enough constant. Notice that, in Lemma 6.7.7, the rate v is of the desired order

(n/ log n)
− β

2β+d . The result of the theorem now follows from Lemma 6.7.7 and the standard

argument to obtain the lower bounds, see Section 2.7.4 in Tsybakov (2009).

Proofs of auxiliary lemmas

Recall that Θ′ = {x + y : x ∈ Θ and ∥y∥ ≤ 1} ⊇ {x + y : x ∈ Θ and y ∈ Supp(K)}.
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Lemma 6.7.8. For any q ≥ 1, let

ν1,q =

∫
Rd

∥U(u)K(u)∥q du , ν2,q =

∫
Rd

∥∥∥U (u)U⊤ (u)K (u)
∥∥∥q

op
du ,

and pmax = maxy∈Θ′ p(y). Then, under Assumption 6.2.4, for any x ∈ Θ, k ∈ [n], and i ∈ [k],

we have

(i) h−d
k E [supx∈Θ ∥Ri,k(x)∥q] ≤ pmaxν1,q .

(ii) h−d
k E

[
supx∈Θ ∥Mi,k(x)∥qop

]
≤ pmaxν2,q .

(iii) There exists λmin > 0, such that infx∈Θ λmin (E [Bk(x)]) ≥ λmin.

Proof. We have

h−d
k E

[∥∥∥∥sup
x∈Θ

Ri,k(x)
∥∥∥∥q] = h−d

k

∫
Rd

sup
x∈Θ

∥∥∥∥U (y − x
hk

)
K

(
y − x
hk

)∥∥∥∥q p(y) dy

=

∫
Rd

∥U(u)K(u)∥q sup
x∈Θ

p(x + hku) du ≤ pmaxν1,q .

For (ii) we can write

h−d
k E

[
sup
x∈Θ

∥Mi,k(x)∥qop

]
= h−d

k

∫
Rd

sup
x∈Θ

∥∥∥∥U (y − x
hk

)
U⊤

(
y − x
hk

)
K

(
y − x
hk

)∥∥∥∥q
op
p(y) dy

=

∫
Rd

∥∥∥U (u)U⊤ (u)K (u)
∥∥∥q

op
sup
x∈Θ

p(x + hku) du ≤ pmaxν2,q .

Similarly, for (iii) we get

E [Bk(x)] = h−d
k E

[
U

(
x1 − x
hk

)
U⊤

(
x1 − x
hk

)
K

(
x1 − x
hk

)]
=

∫
Rd

U (u)U⊤ (u)K (u) p(x + hku) du .

Introducing the notationH =
∫
Rd U (u)U⊤ (u)K (u) we deduce that infx∈Θ λmin (E [Bk(x)]) ≥

pminλmin (H). By (Tsybakov, 1986, Lemma 1), we have λmin (H) > 0. We conclude the proof

by letting λmin = pminλmin (H).

Lemma 6.7.9. Let k ∈ [n], and hk =
(
log(k+1)

k

) 1
2β+d . Let Assumption 6.2.4 hold. Then, for any

x ∈ Θ, we have

E

[
sup
x∈Θ

∥Bk,λ(x)−E [Bk,λ(x)]∥4op

]
≤ A1h

−2d
k k−2 log(k + 1)2 . (6.17)

Furthermore, for k ≥ λ−2
k h−d

k log(k + 1), we have E
[
supx∈Θ ∥Bk,λ(x)∥−4

op

]
≤ A2λ

−4
min , where

A1,A2 > 0 are numerical constants.
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Proof. In order to prove (6.17), we first show that ∥Bk,λ(x)−E [Bk,λ(x)]∥op is bounded from

above by a Lipschitz function. Let Qi,k(x) = h−d
k Mi,k(x)− h−d

k E [Bk,λ(x)] .

1. Proving a Lipschitz upper bound: First note that

∥Bk,λ(x)−E [Bk,λ(x)]∥op ≤
S∑

s=1

∣∣∣∣∣k−1h−d
k

k∑
i=1

(Qi,k(x)−E [Qi,k(x)])s

∣∣∣∣∣ ,
where (Qi,k(x)−E [Qi,k(x)])s is the (s, s)-entry of the matrix Qi,k(x)−E [Qi,k(x)]. Recall that

the kernel function K is LK-Lipschitz. Furthermore, for s ∈ [S] let G(s) : Rd → R, such that

G(s)(u) =
(
U (u)U⊤ (u)

)
s
,

it is straightforward to check that G(s) is a continuously differentiable function. Let Ω be a con-

vex and compact subset of Rd, such that Supp(K) ⊆ Ω, and let L(s)
G = maxu∈Ω

∥∥∇G(s)(u)
∥∥,

and LG = maxs∈[S] Ls. Now, it is clear to see that for any s ∈ [S], G(s) is a LG-Lipschitz

function on Supp(K). Moreover, for any s ∈ [S], and x,y ∈ Θ, we can write

∣∣∣∣k−1h−d
k

k∑
i=1

(
(Qi,k(x)−E[Qi,k(x)])s − (Qi,k(y)−E [Qi,k(y)])s

)∣∣∣∣ ≤ k−1h−d
k

k∑
i=1

|(Qi,k(x))s − (Qi,k(y))s|︸ ︷︷ ︸
term I

+ k−1h−d
k

k∑
i=1

E [|(Qi,k(x))s − (Qi,k(y))s|]︸ ︷︷ ︸
term II

.

For term I if h−1
k (xi − x), h−1

k (xi − y) ∈ Supp(K), we have

term I =
k∑

i=1

∣∣∣∣G(s)

(
xi − x
hk

)
K

(
xi − x
hk

)
−G(s)

(
xi − y
hk

)
K

(
xi − y
hk

)∣∣∣∣
=

k∑
i=1

∣∣∣∣ (G(s)

(
xi − x
hk

)
−G(s)

(
xi − y
hk

))
K

(
xi − x
hk

)
+

(
K

(
xi − x
hk

)
−K

(
xi − y
hk

))
G(s)

(
xi − y
hk

) ∣∣∣∣
≤ kh−1

k A3 ∥x − y∥ ,

where A3 = maxu∈Supp(K) LGK(u) + maxs∈[S],i∈[k],u∈Supp(K) LKG
s(u). The scenarios when

either one or both of the points h−1
k (xi − x), h−1

k (xi − y) do not belong to Supp(K), can be

treated similarly. For term II, with exactly the same steps, we can write

term II ≤ kh−1
k A3 ∥x − y∥ .
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By combining all these bounds we deduce that

S∑
s=1

∣∣∣∣∣k−1h−d
k

k∑
i=1

(
(Qi,k(x)−E [Qi,k(x)])s − (Qi,k(y) +E [Qi,k(y)])s

)∣∣∣∣∣ ≤ ALiph
−d−1
k ∥x − y∥ ,

where ALip = 2SA3.

2. Providing an upper bound for the probability: For any t ≥ 0, we can write

P

[
sup
x∈Θ

∥Bk,λ(x)−E [Bk,λ(x)]∥op ≥ t

]
≤ P

[
S∑

s=1

sup
x∈Θ

∣∣∣∣∣k−1h−d
k

k∑
i=1

F
(s)
i (x)

∣∣∣∣∣ ≥ t

]
(6.18)

≤
S∑

s=1

P

[
sup
x∈Θ

∣∣∣∣∣k−1h−d
k

k∑
i=1

F
(s)
i (x)

∣∣∣∣∣ ≥ t

S

]
︸ ︷︷ ︸

term III

,

where we defined F (s)
i (x) = (Qi,k(x)−E [Qi,k(x)])s. From now on, we focus on providing an

upper bound for term III. For ϵ > 0, consider an ϵ-net of Θ, namely N , with cardinality N (Θ, ϵ).

Therefore, for any x ∈ Θ, there exists y ∈ N , such that ∥x − y∥ < ϵ, and we can write

term III ≤
S∑

s=1

N (Θ, ϵ) sup
x∈N

P

[∣∣∣∣∣k−1h−d
k

k∑
i=1

F
(s)
i (x)

∣∣∣∣∣ ≥ t

S
− ALiph

−d−1
k ϵ

]

≤
S∑

s=1

(
diam(Θ)

ϵ
+ 1

)d

sup
x∈N

P

[∣∣∣∣∣k−1h−d
k

k∑
i=1

F
(s)
i (x)

∣∣∣∣∣ ≥ t

S
− ALiph

−d−1
k ϵ

]
.

where diam(Θ) = maxx,y∈Θ ∥x − y∥, and we used the fact that N (Θ, ϵ) ≤
(

diam(Θ)
ϵ + 1

)d
. By

assigning ϵ = t
2ALipS

hd+1
k , we get

term III ≤
S∑

s=1

(
2ALipSdiam(Θ)

t
· h−d−1

k + 1

)d

sup
x∈N

P

[∣∣∣∣∣k−1h−d
k

k∑
i=1

F
(s)
i (x)

∣∣∣∣∣ ≥ t

2S

]
.

Invoking Bernstein’s inequality we deduce that

term III ≤
S∑

s=1

(
2ALipSdiam(Θ)

t
· h−d−1

k + 1

)d

P

[
−1

2
·min

(
kt2

S2υ2
,
kt

Sω

)]
, (6.19)

where

υ2 = sup
x∈N ,s∈[S]

E

[∣∣∣h−d
k F

(s)
1 (x)

∣∣∣2] , and ω = sup
x∈N ,s∈[S],i∈[k]

h−d
k

∣∣(Qi,k(x)−E [Qi,k(x)])s
∣∣ .
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We continue the proof by providing upper bounds for the terms υ and ω. For υ, we can write

υ2 = sup
x∈N ,s∈[S]

h−2d
k E

[∣∣(Q1,k(x)−E [Q1,k(x)])s
∣∣2]

≤ sup
x∈N ,s∈[S]

h−2d
k E

[∣∣(Q1,k(x))s
∣∣2]

≤ sup
x∈N ,s∈[S]

h−d
k

∫ ∣∣∣(U (u)U⊤ (u)K (u)
)
s

∣∣∣2 p(x + hku) ≤ h−d
k A4 ,

where A4 = pmax sups∈[S]
∫ ∣∣(U (u)U⊤ (u)K (u)

)
s

∣∣2 du. Similarly, for ω, we have

ω ≤ sup
x∈N ,s∈[S],i∈[k]

h−d
k

(∣∣(Qi,k(x))s
∣∣+E

[∣∣(Qi,k(x))s
∣∣)] ≤ h−d

k A5 ,

where A5 = 2 supu∈Supp(K),s∈[S] κmax

∣∣(U (u)U⊤ (u)
)
s

∣∣. By substituting these bounds in (6.19),

we get

term III ≤
S∑

s=1

(A7
t
h−d−1
k + 1

)d
exp

(
−A6 ·min

(
kt2hdk, kth

d
k

))
(6.20)

= S exp
(
−A6 ·min

(
kt2hdk, kth

d
k

)
+ d log

(A7
t
h−d−1
k + 1

))
,

where A6 = min
(

1
2S2A2

, 1
2SA3

)
, and A7 = 2ALipSdiam(Θ). Finlay, by replacing (6.20) in (6.18),

we get

P

[
sup
x∈Θ

∥Bk,λ(x)−E [Bk,λ(x)]∥op ≥ t

]
≤ S exp

(
−A6 ·min

(
kt2hdk, kth

d
k

)
+ d log

(A7
t
h−d−1
k + 1

))
.

3. Getting the final upper bound: For any a ≥ 0, we can write

E

[
sup
x∈Θ

∥Bk,λ(x)−E [Bk,λ(x)]∥4op

]
=

∫ ∞

t=0
4t3P

[
sup
x∈Θ

∥Bk,λ(x)−E [Bk,λ(x)]∥op ≥ t

]
dt

≤ a4 + S

∫ ∞

t=a
4t3 exp

−A6 ·min
(
kt2hdk, kth

d
k

)
︸ ︷︷ ︸

term IV

+ d log
(A8
t
h−d−1
k + 1

)
︸ ︷︷ ︸

V

 dt ,

where A8 = max(A7, 1,A
−2
6 ). Note that term IV is an increasing and term V is a decreasing

function of t. Now we wish to assign a large enough to ensure that term IV dominates term V.

Let

a = 4d
2β + d

β
3

√
A8
A6

√
log(k + 1)h

− d
2

k k−
1
2 .

We have two possibilities. First assume that a < 1, then we have

term IV = A6ka
2hdk ≥ 16d2A

1
3
6 A

2
3
8 log(k + 1) .
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Since A8 ≥ 1, we have

term V ≤ d log

(
2A8
a
h−d−1
k

)
≤ d log

A
1
3
6 A

2
3
8

2d

(
k

log(k + 1)

)β+d+1
2β+d

 ≤ d log

A
1
3
6 A

2
3
8

d

k

2 log(k + 1)

 ,

where the last inequality is obtained from the fact that k/ log(k+1) ≥ 1, and β+d+1
2β+d ≤ 1. Since

2 log(k + 1) ≥ 1, we deduce that

term V ≤ d log

A
1
3
6 A

2
3
8

d
k

 ,

which implies

2 · term V ≤ term IV .

Now, assume that a ≥ 1. Then we have

term IV = A6kah
d
k ≥ 4d

2β + d

β
A

2
3
6 A

1
3
8

√
log(k + 1)h

d
2
k k

1
2

≥ 4d
2β + d

β
A

2
3
6 A

1
3
8 k

β
2β+d ,

and

term V ≤ d log

A
2
3
6 A

1
3
8

4d

(
k

log(k + 1)

)β+d+1
2β+d

+ 1


≤ d log

A
2
3
6 A

1
3
8

2d
k + 1


≤ d

2β + d

β
log

(A 2
3
6 A

1
3
8 k + 1

) β
2β+d

 ,

Since A
2
3
6 A

1
3
8 ≥ 1 and β/(2β + d) ≤ 1, we have

(
A

2
3
6 A

1
3
8 k + 1

) β
2β+d

≤
(
A

2
3
6 A

1
3
8 k

β
2β+d

)
+ 1 .

Furthermore, using the fact that log(x + 1) ≤ x, for all x > 0, we find that term V ≤ d2β+d
β ·

A
2
3
6 A

1
3
8 k

β
2β+d , and consequently that

2 · term V ≤ term IV .
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Therefore, we deduce that

E

[
sup
x∈Θ

∥Bk,λ(x)−E [Bk,λ(x)]∥4op

]
≤ A9k

−2h−2d
k log(k + 1)2 + S

∫ ∞

t=0
4t3 exp

(
−A10min

(
kt2hdk, kth

d
k

))
dt︸ ︷︷ ︸

term VI

,

where A9 =
(
4d2β+d

β
3

√
A8
A6

)4
and A10 = A6

2 . To conclude the proof it is enough to provide an

upper bound for term VI. In order to calculate the integral in term VI, we proceed with similar

steps as in the proof of Lemma 6.7.10 and we obtain

term VI ≤ A11k
−2h−2d

k ,

where A11 > 0 only depends on A10 and S. We conclude the first part of the proof by letting

A1 = A9 + A11. For the second part of the proof, similar to the proof of Lemma 6.7.10, we can

write

E

[
sup
x∈Θ

∥∥Bk,λ(x)−1
∥∥4

op

]
≤ 4E

[
sup
x∈Θ

∥∥∥Bk,λ(x)−1 − (E [Bk,λ(x)])−1
∥∥∥4

op

]
+ 4 sup

x∈Θ

∥∥∥(E [Bk,λ(x)])−1
∥∥∥4

op

≤ 4λ−4
minλ

−4
k E

[
sup
x∈Θ

∥Bk,λ(x)−E [Bk,λ(x)]∥4op

]
+ 4λ−4

min .

By the first part of the proof we have E
[
supx∈Θ ∥Bk,λ(x)−E [Bk,λ(x)]∥4op

]
≤ A1k−2h−2

k log(k+

1)2, which gives

E

[
sup
x∈Θ

∥∥Bk,λ(x)−1
∥∥4

op

]
≤ 4A1λ

−4
mink

−2h−2d
k log(k + 1)2λ−4

k + 4λ−4
min .

Since k ≥ λ2kh
−d
k log(k + 1), we deduce that

E

[
sup
x∈Θ

∥∥Bk,λ(x)−1
∥∥4

op

]
≤ 4(A1 + 1)λ−4

min .

We finish the proof by assigning A2 = 4(A1 + 1).

Lemma 6.7.10. Let k ∈ [n], with 1 ≤ khdk, and let Assumption 6.2.4 hold. Then, for any x ∈ Θ,

we have

E
[
∥Bk,λ(x)−E [Bk,λ(x)]∥4op

]
≤ A1h

−2d
k k−2 .

Furthermore, for k ≥ λ−2
k h−d

k , we have E
[
∥Bk,λ(x)∥−4

op

]
≤ A2λ

−4
min , where A1,A2 > 0 are

numerical constants.
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Proof. Let Qi,k(x) = h−d
k Mi,k(x)− h−d

k E [Bk,λ(x)] . We introduce

ω = sup
x∈Θ

max
1≤i≤n

∥Qi,k(x)∥op , and υ2 = sup
x∈Θ

∥∥∥∥∥
n∑

i=1

EQ⊤
i,k(x)Qi,k(x)

∥∥∥∥∥
op

. (6.21)

Note that for any i ∈ [k] and x ∈ Rd, Qi,k(x) ∈ RS×S . Then by (Vershynin, 2019, Theorem

5.4.1), for any t ≥ 0, we have

P

∥∥∥∥∥
k∑

i=1

Qi,k(x)

∥∥∥∥∥
op

≥ t

 ≤ 2S exp

(
−cmin

(
t2

υ2
,
t

ω

))
,

where c > 0 is a numerical constant.

E

∥∥∥∥∥
k∑

i=1

Qi,k(x)

∥∥∥∥∥
4

op

 =

∫ ∞

0
4t3P

∥∥∥∥∥
k∑

i=1

Qi,k(x)

∥∥∥∥∥
op

≥ t

 dt

= 4S

∫ υ2

K

0
t3 exp

(
−c t

2

υ2

)
dt︸ ︷︷ ︸

term I

+4S

∫ ∞

υ2

K

t3 exp

(
−c t

ω

)
dt︸ ︷︷ ︸

term II

.

We provide upper bounds for the terms I and II, separately.

term I = 2S
υ2

c

(
−t2 exp

(
−c t

2

υ2

)) ∣∣∣∣υ
2

ω

t=0

+ 4S
υ2

c

∫ υ2

ω

0
t exp

(
−c t

2

υ2

)
dt

≤ 4S
υ2

c

∫ υ2

ω

0
t exp

(
−c t

2

υ2

)
dt

= 2S
υ4

c2

∫ υ2

ω

0

2ct

υ2
exp

(
−c t

2

υ2

)
dt

= −2S
υ4

c2
exp(−c t

2

υ2
)

∣∣∣∣υ
2

ω

t=0

≤ 2s
υ4

c2
.
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Similarly, for term II we can write

term II = −4S
ω

c
t3 exp

(
−c t

ω

) ∣∣∣∣∞
υ2

ω

+ 12S
ω

c

∫ ∞

υ2

ω

t2 exp

(
−c t

ω

)
dt

= 4S
υ6

cω2
exp

(
−c υ

2

ω2

)
+ 12S

ω

c

∫ ∞

υ2

ω

t2 exp

(
−c t

ω

)
dt

≤ 4S
υ4

c2
+ 12S

ω

c

∫ ∞

υ2

ω

t2 exp

(
−c t

ω

)
dt

≤ 4S
υ4

c2
− 12S

ω2

c2
t2 exp

(
−c t

ω

) ∣∣∣∣∞
υ2

ω

+ 24S
ω2

c2

∫ ∞

υ2

ω

t exp(−c t
ω
) dt

≤ 4S
υ4

c2
+ 12S

υ4

c2
exp

(
−c υ

2

ω2

)
+ 24S

ω2

c2

∫ ∞

υ2

ω

t exp(−c t
ω
) dt

= 4S
υ4

c2
+ 12S

υ2ω2

c3
− 24S

ω3

c3
t exp

(
−c t

ω

) ∣∣∣∣∞
υ2

ω

+ 24S
ω3

c3

∫ ∞

υ2

ω

exp

(
−c t

ω

)
dt

≤ 4S
υ4

c2
+ 12s

υ2ω2

c3
+ 24S

ω4

c4
+ 24s

ω3

c3

∫ ∞

υ2

ω

exp

(
−c t

ω

)
dt

≤ 4S
υ4

c2
+ 12S

υ2ω2

c3
+ 24S

ω4

c4
− 24S

ω4

c4
exp

(
−c t

ω

) ∣∣∣∣∞
υ2

ω

≤ 4S
υ4

c2
+ 12S

υ2ω2

c3
+ 24S

ω4

c4
+ 24S

ω6

c5υ2
.

By combining the provided bounds for the terms I and II, we deduce that

E

∥∥∥∥∥
k∑

i=1

Qi,k(x)

∥∥∥∥∥
4

op

 ≤ 6S
υ4

c2
+ 12S

υ2ω2

c3
+ 24S

ω4

c4
+ 24S

ω6

c5υ2
. (6.22)

To conclude the first part of the proof, it is enough to bound from above the terms K and σ

defined in (6.21). For K, we can write

ω ≤ sup
x∈Θ

max
i∈[k]

2h−d
k

∥∥∥∥∥U
(

xi − x
hk

)
U

(
xi − x
hk

)⊤
K

(
xi − x
hk

)∥∥∥∥∥
op

≤ A4h
−d
n ,

where A4 = maxu∈Supp(K)

∥∥∥U (u)U (u)⊤K (u)
∥∥∥

op
. For υ2, by Lemma 6.7.8(ii), we have

υ2 = sup
x∈Θ

k∑
i=1

∥∥∥EQ⊤
i,k(x)Qi,k(x)

∥∥∥
op

≤ kh−2d
k sup

x∈Θ
E

∥∥∥∥∥U
(

x1 − x
hk

)
U

(
x1 − x
hk

)⊤
K

(
x1 − x
hk

)∥∥∥∥∥
2

op


≤ pmaxν2,2kh

−d
k .
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Substituting the above bounds in (6.22) we get

E

∥∥∥∥∥
k∑

i=1

Qi,k(x)

∥∥∥∥∥
4

op

 ≤ A4
[
k2h−2d

k + kh−3d
n + h−4d

k

]
,

where A4 > 0 is a numerical constant. Since 1
k

∑k
i=1Qi,k(x) = Bk,λ(x)−E [Bk,λ(x)] we deduce

that

E
[
∥Bk,λ(x)−E [Bk,λ(x)]∥4op

]
≤ A3

[
k−2h−2d

k + k−3h−3d
k + k−4h−4d

k

]
.

Since 1 ≤ khdk we get

E
[
∥Bk,λ(x)−E [Bk,λ(x)]∥4op

]
≤ A1h

−2d
k k−2 ,

with A1 = 3A3. For the second part the proof, we can write

E
[∥∥Bk,λ(x)−1

∥∥4
op

]
≤ 4E

[∥∥Bk,λ(x)−1 − (E[Bk,λ(x)])−1
∥∥4

op

]
+

4

λ4min

≤ 4A1
λ4λ4min

h−4d
k k−2 +

4

λ4min

.

So, for any k ≥ λ−2
k h−d

k , we have

E
[∥∥Bk,λ(x)−2

∥∥
op

]
≤ A2
λ4min

,

where A2 = 4A1 + 4.

Lemma 6.7.11. Let k ∈ [n], with hk =
(
log(k+1)

k

) 1
2β+d , and let Assumptions 6.2.2 and 6.2.4

hold. Then, we have

E

sup
x∈Θ

∥∥∥∥∥k−1h−d
k

k∑
i=1

Ri,k(x)ξi

∥∥∥∥∥
4
 ≤ Ak−2h−2d

k log(k + 1)2 .

Proof. Let Gk(x) = k−1h−d
k

∑k
i=1Ri,k(x)ξi. The objective of this proof is to provide a control

for the term E
[
supx∈Θ ∥Gk(x)∥4

]
. First, we show that G(·) is upper bounded by a Lipschitz

function.

Providing a Lipschitz upper bound. Note that we can write

∥G(x)∥ ≤
S∑

s=1

∣∣∣∣∣k−1h−d
k

k∑
i=1

(
U

(
xi − x
hk

)
K

(
xi − x
hk

))
s

ξi

∣∣∣∣∣ ,
where

(
U
(

xi−x
hk

)
K
(

xi−x
hk

))
s

is the s-th coordinate of the vector U
(

xi−x
hk

)
K
(

xi−x
hk

)
, for s ∈

[S]. With similar steps of deduction as in the proof of Lemma 6.7.9, we can see that there
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exists ALip > 0, such that for any x,y ∈ Θ

S∑
s=1

∣∣∣∣∣k−1h−d
k

k∑
i=1

((
U

(
xi − x
hk

)
K

(
xi − x
hk

))
s

−
(
U

(
xi − y
hk

)
K

(
xi − y
hk

))
s

)
ξi

∣∣∣∣∣ ≤ ALiph
−d−1
k ∥x − y∥ .

Let F (s)
i (x) =

(
U
(

xi−x
hk

)
K
(

xi−x
hk

))
s
ξi, for i ∈ [k]. Thus, we can write

E

[
sup
x∈Θ

∥G(x)∥
]
≤

S∑
s=1

E

[
sup
x∈Θ

∣∣∣∣∣k−1h−d
k

k∑
i=1

F
(s)
i (x)

∣∣∣∣∣
]
,

Now, for ϵ > 0, consider an ϵ-net of Θ, namely N , with cardinality N (Θ, ϵ). Then, we have

E

[
sup
x∈Θ

∥G(x)∥4
]
≤

S∑
s=1

4E

sup
x∈N

∣∣∣∣∣k−1h−d
k

k∑
i=1

F
(s)
i (x)

∣∣∣∣∣
4


+
S∑

s=1

4E

 sup
x,w:∥x−w∥≤ϵ

k−4h−4d
k

∣∣∣∣∣
k∑

i=1

(
F

(s)
i (x)− F

(s)
i (w)

)∣∣∣∣∣
4


≤
S∑

s=1

E

sup
x∈N

∣∣∣∣∣k−1h−d
k

k∑
i=1

F
(s)
i (x)

∣∣∣∣∣
4


︸ ︷︷ ︸
term I

+A1h
−4d−4
k ϵ4 ,

(6.23)

where we introduced A1 = 32A4Lipσ
4. Now, we wish to provide an upper bound for term I above.

P

[
sup
x∈N

∣∣∣∣∣k−1h−d
k

k∑
i=1

F
(s)
i (x)

∣∣∣∣∣ ≥ t

]
≤ N (Θ, ϵ) sup

x∈N
P

[∣∣∣∣∣k−1h−d
k

k∑
i=1

F
(s)
i (x)

∣∣∣∣∣ ≥ t

]

≤
(

diam(Θ)

ϵ
+ 1

)d

sup
x∈N

P

[∣∣∣∣∣k−1h−d
k

k∑
i=1

F
(s)
i (x)

∣∣∣∣∣ ≥ t

]

The term k−1h−d
k

∑k
i=1 F

(s)
i (x) is sub-Gaussian. For any t ≥ 0, and x ∈ N we can write

E

exp
t(k−1h−d

k

k∑
i=1

F
(s)
i (x)

)2
 =

∞∑
q=0

tqk−2qh−2qd
k E

[(∑k
i=1 F

(s)
i (x)

)2q]
q!

. (6.24)
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Now, for any non negative integer q, we provide an upper bound for the term E

[
k−2qh−2qd

k

(∑k
i=1 F

(s)
i (x)

)2q]
.

E

[((
U(

xi − x
hk

)K(
xi − x
hk

)

)
s

)2q
]
=

∫ ((
U(

xi − x
hk

)K(
xi − x
hk

)

)
s

)2q

p(xi) dxi

= hdk

∫
((U(u)K(u))s)

2q p(hku+ x) du

≤ hdkL
2q
max ,

where we introduced Lmax = maxs∈[S]maxu∈Supp(K) | (U(u)K(u))s |.

k−2qh−2qd
k E

( k∑
i=1

F
(s)
i (x)

)2q
 ≤ (2σLmax)

2qq!k−2qh−2qd
k

(
khdk + k2h2dk

(
q − 1

1

)
+ · · ·+ kqhqdk

(
q − 1

q − 1

))
≤ (A2k

−1h−d
k )qq! ,

where A2 = 4σ2L2
max, and we used the fact that khdk ≥ 1. By letting t0 = 2A2k−1h−d

k in (6.24),

we can write

E

exp
t0(k−1h−d

k

k∑
i=1

F
(s)
i (x)

)2
 ≤ 2 .

Let ϵ = diam(Θ)h
3d
4
+1

k k−1. Since k−1h−d
k

∑k
i=1 F

(s)
i is sub-Gaussian, we have

P

[
sup
x∈N

∣∣∣∣∣k−1h−d
k

k∑
i=1

F
(s)
i (x)

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
− t2

4A2k−1h−d
k

+ d log

(
diam(Θ)

ϵ
+ 1

))

≤ 2 exp

(
− t2

4A2k−1h−d
k

+ A3 log (k)

)
,

where A3 = d
(

3d+4
4(2β+d) + 1

)
.

The final bound. For any a ≥ 0, we have

E

[
sup
x∈N

∥G(x)∥4
]
≤ Sa4 + 8S

∫ ∞

a
t3 exp

(
− t2

4A2k−1h−d
k

+ A3 log (k)

)
dt .

Take a = (8A2A3k−1h−d
k log(k))

1
2 , then we have

E

[
sup
x∈N

∥G(x)∥4
]
≤ 64SA22A

2
3k

−2h−2d
k log(k)2 + 8S

∫ ∞

a
t3 exp

(
− t2

8A2k−1h−d
k

)
dt

≤ A4k
−2h−2d

k log(k + 1)2 ,

(6.25)

where A4 > 0 is a numerical constant. By using (6.25), and substituting ϵ = diam(Θ)h
3d
4
+1

k k−1
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in (6.23), we get

E

[
sup
x∈Θ

∥G(x)∥4
]
≤ Ak−2h−2d

k log(k + 1)2 ,

where we introduced A = A1 + A4.

Lemma 6.7.12. Let k ∈ [n], with 1 ≤ khdk, and let Assumptions 6.2.3(iv) and 6.2.4 hold. Then,

for any x ∈ Θ, we have

E
[
∥Ck(x)−E [Ck(x)]∥4

]
≤ Ah−2d

k k−2 .

We omit the proof of this lemma since it follows the same lines as the proof of Lemma

6.7.10.

Lemma 6.7.13. Let k ∈ [n], and hk =
(
log(k+1)

k

) 1
2β+d . Let Assumptions 6.2.3(iv) and 6.2.4

hold. Then, for any x ∈ Θ, we have

E

[
sup
x∈Θ

∥Ck(x)−E [Ck(x)]∥4
]
≤ Ah−2d

k k−2 log(k + 1)2 .

We omit the proof of this lemma since it follows the same lines as the proof of Lemma

6.7.9.

Lemma 6.7.14. Let k ∈ [n], and hk =
(
log(k+1)

k

) 1
2β+d . Let Assumption 6.2.4 hold, and k ≥

λ−2
k h−d

k log(k + 1). Then, for any x ∈ Θ, we have

E

[
sup
x∈Θ

∥∥∥Bk,λ(x)−1 − (E[Bk,λ(x)])−1
∥∥∥

op
sup
x∈Θ

∥Ck(x)−E [Ck(x)]∥
]
≤ Ah−d

k k−1 log(k + 1) ,

where A > 0 is a numerical constant.

Proof. In view of the Cauchy-Schwarz inequality, it is enough to provide an upper bound for

the following terms:

E

[
sup
x∈Θ

∥∥∥Bk,λ(x)−1 − (E[Bk,λ(x)])−1
∥∥∥2

op

]
︸ ︷︷ ︸

term I

E

[
sup
x∈Θ

∥Ck(zn)−E [Ck(x)]∥2
]

︸ ︷︷ ︸
term II


1
2

.

For term I, we use the Cauchy-Schwarz inequality once more and we get

term I ≤ λ−2
min

(
E

[
sup
x∈Θ

∥Bk,λ(x)∥−4
op

]
E

[
sup
x∈Θ

∥Bk,λ(x)−E [Bk,λ(x)]∥4op

]) 1
2

≤ A1h
−d
k k−1 log(k + 1) ,

where the last inequality is obtained by Lemma 6.7.9, , and A1 > 0 is a numerical constant.
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For term II, Lemma 6.7.13, yields

term II ≤
(
E
[
∥Ck(x)−E [Ck(x)]∥2

])
≤ A2h

−d
k k−1 log(k + 1) ,

where A2 > 0 is the numerical constant that appears in Lemma 6.7.13. We conclude the proof

by combining the above bounds.
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Chapter 7

Group meritocratic fairness in linear
contextual bandits

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
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7.4 Simulation with diverse reward distributions . . . . . . . . . . . . . . . . . . . . 212
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We study the linear contextual bandit problem where an agent has to select one candidate

from a pool and each candidate belongs to a sensitive group. In this setting, candidates’

rewards may not be directly comparable between groups, for example when the agent is an

employer hiring candidates from different ethnic groups and some groups have a lower reward

due to discriminatory bias and/or social injustice. We propose a notion of fairness that states

that the agent’s policy is fair when it selects a candidate with highest relative rank, which

measures how good the reward is when compared to candidates from the same group. This

is a very strong notion of fairness, since the relative rank is not directly observed by the agent

and depends on the underlying reward model and on the distribution of rewards. Thus we

study the problem of learning a policy which approximates a fair policy under the condition that

the contexts are independent between groups and the distribution of rewards of each group is

absolutely continuous. In particular, we design a greedy policy which at each round constructs

a ridge regression estimate from the observed context-reward pairs, and then computes an

estimate of the relative rank of each candidate using the empirical cumulative distribution

function. We prove that, despite its simplicity and the lack of an initial exploration phase,

the greedy policy achieves, up to log factors and with high probability, a fair pseudo-regret

203



of order
√
dT after T rounds, where d is the dimension of the context vectors. The policy

also satisfies demographic parity at each round when averaged over all possible information

available before the selection. Finally, we use simulated settings and experiments on the US

census data to show that our policy achieves sub-linear fair pseudo-regret also in practice.

7.1 Introduction

We consider the linear contextual bandit setup (Auer, 2002) where at each round t ∈ [T ],

an agent receives a set of feature vectors {Xt,a}Ka=1 with Xt,a ⊂ Rd sampled from the en-

vironment, one for each arm a ∈ [K]. We assume that context (or candidate) Xt,a has an

associated reward ⟨µ∗, Xt,a⟩ where µ∗ ∈ Rd is unknown to the agent. After the agent selects

the arm at, it receives the noisy reward equal to rt,at = ⟨µ∗, Xt,at⟩ + ηt, where ηt is some

scalar noise (formally specified later). In addition, we assume that each arm represents a

fixed sensitive group (e.g. based on ethnicity, gender, etc.). The latter assumption simplifies

the presentation but implies that at each round the agent receives exactly one candidate for

each group. This can be too restrictive e.g. when candidates are sampled i.i.d. together with

their group and/or some groups are minorities. However, our results can be easily adapted to

more realistic settings without such assumption, as we show in Section 7.5 and more rigor-

ously in Section 7.7. Excluding these sections, we use arm and group interchangeably in all

that follows.

Usually, the goal of the agent is to maximise the expected cumulative reward
∑T

t=1⟨µ∗, Xt,at⟩.
Since as we previously explained, this objective might be unfair to some of the sensitive

groups, we instead use a different kind of reward which measures the relative performance

of a candidate compared to others of the same arm/group. First, we additionally assume, for

each group a, that {Xt,a}Tt=1 are i.i.d and have the same distribution of Xa, which we define to

be a random variable with unknown distribution. We call the distribution of ⟨µ∗, Xa⟩ the reward

distribution of arm a and denote with Fa its CDF, i.e. Fa(r) = P(⟨µ∗, Xa⟩ ≤ r) for every r ∈ R.

Then, we introduce the relative rank of candidate Xt,a as Fa(⟨µ∗, Xt,a⟩), that is the probability

that a sample from the reward distribution of arm a is lower than the reward of Xt,a. We argue

that the relative rank, allows to have a fair way of comparing candidates from different groups

and introduce the following fairness definition.

Definition 7.1.1 (Group Meritocratic Fairness). A policy {a∗t }∞t=1 is group meritocratic fair

(GMF) if for all t ∈ N, a ∈ [K]

Fa∗t
(⟨µ∗, Xt,a∗t

⟩) ≥ Fa(⟨µ∗, Xt,a⟩) .

A GMF policy chooses candidates with the highest reward compared to candidates from

the same group. This is a strong definition of fairness which is impossible to satisfy at each

round for a learned policy. As in standard linear contextual bandits, µ∗ is unknown and must
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be learned. In this setting however, we have the additional challenge of learning the CDF for

the rewards of each arm, Fa. Thus, we will focus on how to learn a GMF policy by introducing

the following regret definition.

Definition 7.1.2 (Fair Pseudo-Regret). Let T ∈ N, {at}Tt=1 be the evaluated policy and {a∗t }Tt=1

be a GMF policy. Then we denote by (cumulative) fair pseudo-regret the quantity

RF(T ) :=

T∑
t=1

Fa∗t
(⟨µ∗, Xt,a∗t

⟩)−Fat(⟨µ∗, Xt,at⟩) .

The goal of the learned policy will be to minimize the fair pseudo-regret, since a policy with

sublinear fair pseudo-regret will get closer and closer to a GMF fair policy over time.

Remark 7.1.3. The fair pseudo-regret resembles the standard pseudo-regret defined as

R(T ) :=
T∑
t=1

⟨µ∗, Xt,a
opt
t
⟩ − ⟨µ∗, Xt,at⟩ with aoptt ∈ argmax

a∈[K]
⟨µ∗, Xt,a⟩ ,

where rewards are replaced by relative ranks and aoptt by the GMF policy a∗t . Furthermore,

since the CDF restricted to the support is strictly increasing, when the reward distributions

are the same for each arm, i.e. Fa = Fa′ for all a, a′ ∈ [K], then a policy minimizing the fair

pseudo-regret also minimizes the standard pseudo-regret and vice versa. This is not true in

the general case, where fair and standard pseudo-regrets are often competing objectives. For

example, when {⟨µ∗, Xa⟩}Ka=1 are independent and absolutely continuous and there exists â

such that ⟨µ∗, Xâ⟩ > ⟨µ∗, Xa⟩ for every a ̸= â, then for every t, aoptt = â, while as we will show

in Proposition 7.1.4, a∗t selects each arm with equal probability. Thus, with non-zero probability

aoptt has a linear fair pseudo-regret while a∗t has a linear standard pseudo-regret. Moreover,

in Section 7.7, for K = 2, we show that if ⟨µ∗, X1⟩ and ⟨µ∗, X2⟩ are independent, absolutely

continuous, but not identically distributed, then the GMF policy has a linear standard regret

and {aopt
t }∞t=1 has a linear fair regret with positive probability.

Learning a GMF policy brings several challenges. The relative rank is not directly observed

by the agent, which receives instead only the noisy reward. This implies that the agent has to

estimate Fa, which in general might not even be Lipschitz continuous. This is the main reason

why we restrict our analysis to the case where the rewards {⟨µ∗, Xa⟩}Ka=1 are independent

and absolutely continuous. In particular, for any t ≥ 0, let H−
t := ∪t

i=1

{
{Xi,a}Ka=1, ri,ai , ai

}
with H−

0 = ∅ and Ht := H−
t ∪ {{Xt+1,a}Ka=1} be respectively the history and the information

available for the decision at round t+ 1, then the following holds.

Proposition 7.1.4 (GMF policy satisfies history-agnostic demographic parity ). Let {⟨µ∗, Xa⟩}Ka=1

be independent and absolutely continuous and for every a ∈ [K], t ∈ N, let Xt,a be an i.i.d.

copy of Xa. Then for every t ∈ N, {Fa(⟨µ∗, Xt,a⟩)}Ka=1 are i.i.d. uniform on [0, 1] and

P(a∗t = a |H−
t−1) =

1

K
∀a ∈ [K], (7.1)
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for any GMF policy {a∗t }∞t=1. Note, the randomness lies exclusively in the current contexts

{Xt,a}Ka=1.

Proof. Let ψa := Fa(⟨µ∗, Xt,a⟩). From the assumptions {ψa}Ka=1 are i.i.d random variables,

independent from H−
t−1, with uniform distribution on [0, 1] (see (Casella and Berger, 2021,

Theorem 2.1.10)). Hence ∀a1, a2 ∈ [K]: P(ψa1 = ψa2) = 0, P(a∗t = a |H−
t−1) = P(a∗t = a) and

P(a∗t = a1) = P(ψa1 > ψa′ , ∀a′ ̸= a1) = P(ψa2 > ψa′ , ∀a′ ̸= a2) = P(a∗t = a2) = 1/K .

We call property (7.1) history-agnostic demographic parity since it states that, at each

round, the policy selects all groups with equal probability regardless of the history. Recall that

in our setup each arm corresponds to a sensitive group. Proposition 7.1.4 ensures that a GMF

policy will keep exploring regardless of the history. This fact plays a key role in the design of

our policy, which is greedy without the need of an exploration phase.

Remark 7.1.5. Note that in the standard linear contextual bandit setting, the optimal policy

aoptt does not necessarily satisfy Equation (7.1) even when we assume that {⟨µ∗, Xa⟩}Ka=1 are

independent and absolutely continuous. This is true since when the rewards of one arm are

always lower than at least one of the other arms, that arm will never be selected by the optimal

policy.

In the following, we state and discuss the assumptions made for the analysis of our greedy

policy.

Assumption 7.1.6. Let µ∗ ∈ Rd be the underlying reward model. We assume that:

(i) The noise random variable ηt is zero mean R-subgaussian, conditioned on Ht−1.

(ii) Let Xa be a random variable with values in Rd and such that ∥Xa∥2 ≤ L almost surely.

For any a ∈ [K], {Xi,a}Ti=1 are i.i.d. copies of Xa.

(iii) The random variables {Xa}Ka=1 are mutually independent.

(iv) For every a ∈ [K], there exist da ≥ 1, an absolutely continuous random variable Ya with

values in Rda admitting a density fa, Ba ∈ Rd×da and ca ∈ Rd such that B⊤
a Ba = Ida ,

Xa = BaYa + ca and µ∗⊤Ba ̸= 0 .

Assumption 7.1.6(i) is a standard assumption on the noise in stochastic bandits. 7.1.6(ii)

implies that the actions taken by the policy do not affect future contexts. This is needed to

allow the learning of the distribution of rewards for each group and is also used in Chen et al.

(2020); Li et al. (2019). 7.1.6(iv) implies that ⟨µ∗, Xa⟩ is absolutely continuous and is satisfied
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whenXa is absolutely continuous in a subspace of Rd which is not orthogonal to µ∗ 1. This fact

combined with 7.1.6(iii) ensures that Proposition 7.1.4 holds. Assumptions 7.1.6(iii)-(iv) are

specific to our setting and a current limitation of the analysis. Notice however, that 7.1.6(iii)

is reasonable when the groups are sufficiently isolated, e.g. each context is sourced from a

different country/group, while assuming that the rewards ⟨µ∗, Xa⟩ are absolutely continuous is

natural when the contexts contain continuous attributes. Furthermore 7.1.6(iv) allows µ∗ to act

differently on each group, similarly to the case when there is a different reward vector for each

sensitive group. An example of this is showed in the simulation experiment in Section 7.4.

7.2 The fair-greedy policy

If Proposition 7.1.4 holds, then there is no arm with relative rank always strictly worse than the

others and any learned policy with sub-linear fair pseudo-regret will select all arms with equal

probability in the limit when the number of rounds goes to infinity. Hence, using confidence

intervals will not help in decreasing the probability that one arm is selected. Furthermore,

estimating the relative ranks {Fa(⟨µ∗, Xt,a⟩)}Ka=1 is challenging, since they are not directly

observed and using the past noisy rewards {ri,ai}t−1
i=1 to construct the empirical CDF for each

group, similarly to Kearns et al. (2017), can be inaccurate due to the presence of noise.

For the reasons above, we propose the greedy approach in Algorithm 7, which uses the

following two-stage procedure at each round t. First it assembles the previously selected

contexts and corresponding rewards from iterate 1 up to t̃ = ⌊(t − 1)/2⌋ (line 4) in order

to construct an estimate µt̃ of µ∗ (line 5), which is a noisy version of the ridge regression

estimate. Secondly, for each arm a, our policy computes an estimate of the relative rank

Fa(⟨µ∗, Xt,a⟩), namely F̂t,a(⟨µt̃, Xt,a⟩), which is the empirical CDF value of ⟨µt̃, Xt,a⟩ and is

constructed using µt̃ and the contexts from round t̃ + 1 up to t (line 6). Lastly, it selects at
uniformly at random among the arms maximizing the relative rank estimate (line 7).

Fair-Greedy has two hyperparameters λ and ρ, although the latter can be set arbitrarily

small without affecting the regret. Moreover, it is greedy as at each time t, it always selects

from the arms the one with the highest currently estimated relative rank. However, contrary

to standard greedy approaches in bandits, Fair-Greedy does not require an initial exploration

phase because it naturally explores all arms, as the following lemma and remark show.

Lemma 7.2.1 (Fair-Greedy satisfies information averaged demographic parity ). Let at be the

action taken by Fair-Greedy at time t and let Assumption 7.1.6 be satisfied. Then, for all t ≥ 1

we have

P(at = a) =
1

K
. (7.2)

1E.g. Xa cannot be sum of random variables that are independent and absolutely continuous in orthogonal
subspaces of Rd.
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Algorithm 7 Fair-Greedy

1: Requires regularization parameter λ > 0 and noise magnitude ρ ∈ (0, 1] .
2: for t = 1 . . . T do
3: Receive contexts {Xt,a}Ka=1

4: Set t̃ = ⌊(t− 1)/2⌋, X1:t̃ = (X1,a1 , . . . , Xt̃,at̃
)⊤, r1:t̃ = (r1,a1 , . . . , rt̃,at̃).

5: If t̃ = 0 set µt̃ = 0, else let Vt̃ := X⊤
1:t̃
X1:t̃ + λId, generate γt̃ ∼ N (0, Id) and compute

µt̃ := V −1
t̃
X⊤

1:t̃
r1:t̃ +

ρ

d
√
t̃
· γt̃ .

6: For each a ∈ [K] compute

F̂t,a(⟨µt̃, Xt,a⟩) := (t− 1− t̃)−1
t−1∑

s=t̃+1

1 {⟨µt̃, Xs,a⟩ ≤ ⟨µt̃, Xt,a⟩} .

7: Sample action
at ∼ U

[
argmax
a∈[K]

F̂t,a(⟨µt̃, Xt,a⟩)
]
.

8: Observe noisy reward rt,at = ⟨µ,Xt,at⟩+ ηt.
9: end for

Proof sketch (proof in Section 7.7). The noise term in µt̃ ensures that µt̃ is absolutely contin-

uous and hence µ⊤
t̃
Ba ̸= 0 almost surely. Combining this with Assumption 7.1.6(iv) we obtain

that ⟨µt̃, Xa⟩ is also absolutely continuous (see Lemma 7.7.1). Moreover, thanks to Assump-

tion 7.1.6(ii)(iii) we can show that the random variables in {F̂t,a(⟨µt̃, Xt,a⟩)}Ka=1 are i.i.d. when

conditioned on µt̃. Note that at is sampled uniformly form the argmax of i.i.d. random vari-

ables, when conditioned on µt̃, which implies P(at = a |µt̃) = 1/K. The statement follows by

taking the expectation over µt̃.

Remark 7.2.2. It is easy to verify (through Lemma 7.2.1) that at any number of rounds T , the

Fair-Greedy policy selects in expectation T/K candidates from every group, i.e. E
[∑T

t=1 1 {at = a}
]
=

T
K for every a ∈ [K]. This also holds for the GMF policy and the one selecting arms uniformly

at random.

Since P(at = a) = EHt−1 [P(at = a |Ht−1)], with Ht−1 being the information available to the

policy before making a decision at round t, we call the property in (7.2) information-averaged

demographic parity, which is weaker than history-agnostic demographic parity (in (7.1)). How-

ever, our analysis still requires a lower bound on P(at = a |H−
t−1) which is presented in the

next section.

Remark 7.2.3 (Computational cost of Fair-Greedy). Compared to common linear contextual

bandits approaches based on ridge regression, Algorithm 7 has an higher computational and

memory cost which grow linearly with t. µt̃ requires us to compute the product of V −1
t̃

and

X⊤
1:t̃
r1:t̃, which can be stored using d2 and d values respectively and updated online (via

sherman-morrison (Hager, 1989)). However, Algorithm 7 also requires, at each round t, to
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keep in memory K(t − 1 − t̃) d-dimensional contexts and to compute the same number of

scalar products to construct the empirical CDF for all K groups.

7.3 Regret analysis

In this section we present the analysis leading to the high probability Õ(K3 +
√
dT ) upper

bound on the fair pseudo-regret of the greedy policy in Algorithm 7. We start by showing two

key properties of CDF functions in the following lemma (proof in Section 7.7). Recall that for

a continuous random variable Z we denote by fZ the associated probability density function

(PDF).

Lemma 7.3.1. Let Assumption 7.1.6(iv) hold and set ∀a ∈ [K], Za := ⟨µ∗, Xa⟩ so that Fa =

FZa and M := maxa∈[K],z∈R fZa(z) < +∞ as the maximum PDF value of the rewards of all

groups. Then, the following two statements are true.

(i) Fa is Lipschitz continuous for every a ∈ [K], and in particular for any r, r′ ∈ R we have

sup
a∈[K]

|Fa(r)−Fa(r
′)| ≤M |r − r′| .

(ii) For every a ∈ [K], let µ ∈ Rd, Z̃a := ⟨µ,Xa⟩. Then we have

sup
a∈[K],r∈R

|Fa(r)−FZ̃a
(r)| ≤ 2M ∥µ∗ − µ∥ ∥xmax∥∗ ,

for any norm ∥·∥ with dual norm ∥·∥∗ , where ∥xmax∥∗ := supx∈∪K
a=1Supp(Xa)

∥x∥∗ and

Supp(Xa) is the support of the random variable Xa .

Lemma 7.3.1(i) bounds the Lipschitz constant of Fa and its derivation is straightforward.

Lemma 7.3.1(ii) is needed since we only have access to an estimate of µ∗, which will take

the role of µ. Its derivation is more subtle and could be of independent interest. By us-

ing Lemma 7.3.1 and the Dvoretzky–Kiefer–Wolfowitz-Massart (DKWM) inequality Dvoretzky

et al. (1956); Massart (1990) to bound the gap between CDF and empirical CDF, we obtain

the following result.

Lemma 7.3.2 (Instant regret bound). Let Assumption 7.1.6(ii)(iv) hold and at to be generated

by Algorithm 7. Then with probability at least 1− δ/4, for all t such that 3 ≤ t ≤ T we have

Fa∗t
(⟨µ∗, Xt,a∗t

⟩)−Fat(⟨µ∗, Xt,at⟩) ≤ 6M ∥µ∗ − µt̃∥Vt̃
∥xmax∥V −1

t̃

+ 2

√
log(8KT/δ)

t− 1
,

where ∥xmax∥V −1
t̃

:= supx∈∪K
a=1Supp(Xa)

∥x∥V −1
t̃

.

Proof. Let Zt := ⟨µt̃, Xat⟩, Z∗
t := ⟨µt̃, Xa∗t

⟩ and FZt , FZ∗
t

be their CDF conditioned on µt̃, at,
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and a∗t . Let also Rinst(t) := Fa∗t
(⟨µ∗, Xt,a∗t

⟩)−Fat(⟨µ∗, Xt,at⟩) . Then we can write

Rinst(t) = Fa∗t
(⟨µ∗, Xt,a∗t

⟩)−Fa∗t
(⟨µt̃, Xt,a∗t

⟩)︸ ︷︷ ︸
(I)

+Fa∗t
(⟨µt̃, Xt,a∗t

⟩)−FZ∗
t
(⟨µt̃, Xt,a∗t

⟩)︸ ︷︷ ︸
(II)

+ FZ∗
t
(⟨µt̃, Xt,a∗t

⟩)− F̂t,a∗t
(⟨µt̃, Xt,a∗t

⟩)︸ ︷︷ ︸
(III)

+ F̂t,a∗t
(⟨µt̃, Xt,a∗t

⟩)− F̂t,at(⟨µt̃, Xt,at⟩)︸ ︷︷ ︸
(IV)

+ F̂t,at(⟨µt̃, Xt,at⟩)−FZt(⟨µt̃, Xt,at⟩)︸ ︷︷ ︸
(V)

+FZt(⟨µt̃, Xt,at⟩)−Fat(⟨µt̃, Xt,at⟩)︸ ︷︷ ︸
(VI)

+ Fat(⟨µt̃, Xt,at⟩)−Fat(⟨µ∗, Xt,at⟩)︸ ︷︷ ︸
(VII)

.

Since at is chosen greedily in Algorithm 7 we have (IV) ≤ 0. Then, applying Lemma 7.3.1(i),

Cauchy-Schwarz and ∥Xt,a∥∗ ≤ ∥xmax∥∗ for (I) and (VII) and Lemma 7.3.1(ii) for (II) and (VI),

we obtain

(I) + (VII) ≤ 2M ∥µ∗ − µt̃∥ ∥xmax∥∗ , (II) + (VI) ≤ 4M ∥µ∗ − µt̃∥ ∥xmax∥∗ .

By noticing that F̂t,a(·) is the empirical CDF of the random variable ⟨µt̃, Xa⟩ conditioned to µt̃,

we can bound (III) and (V) directly using the DKWM inequality (see Lemma 7.7.4), which gives

that with probability at least 1− δ/4 and for all t such that 3 ≤ t ≤ T we have

(III) + (V) ≤ 2

√
log(8KT/δ)

t− 1
.

We conclude the proof by combining the previous bounds and setting ∥·∥ = ∥·∥Vt̃
.

We proceed by controlling the term ∥µ∗ − µt̃∥Vt̃
∥xmax∥V −1

t̃

in Lemma 7.3.2. The quan-

tity ∥µ∗ − µt̃∥Vt̃
can be bounded using the OFUL confidence bounds (Abbasi-Yadkori et al.,

2011, Theorem 2), since the noise term in µt̃ decreases at an appropriate rate. Controlling

∥xmax∥V −1
t̃

requires instead different results than the ones in Abbasi-Yadkori et al. (2011),

since it depends on the distributions of {Xa}Ka=1 and not only on previous contexts and re-

wards. Hence, to provide an upper bound for ∥xmax∥V −1
t̃

which decreases with t, we also rely

on Assumption 7.1.6(iii) and the structure of algorithm 7, which enable the following history-

agnostic lower bound on the probability of selecting one arm.

Proposition 7.3.3. Let Assumption 7.1.6 hold, at be generated by Algorithm 7 and c ∈ [0, 1).

Then with probability at least 1−δ/4 , for all a ∈ [K] and all t ≥ 3+8 log3/2
(
5K e/δ

)
/
(
1− K

√
c
)3

we have

P(at = a |H−
t−1) ≥

c

K
,

where we recall that H−
t = ∪t

i=1

{
{Xi,a}Ka=1, ri,ai , ai

}
.
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Proof sketch (proof in Section 7.7). For any a ∈ [K], let r̂t,a = ⟨µt̃, Xt,a⟩ be the estimated

reward for arm a at round t, denote with Fr̂t,a the CDF of r̂t,a conditioned on µt̃, and let

ϕt,a := Fr̂t,a(r̂t,a) , and ϕ̂t,a := F̂t,a(r̂t,a) ,

where F̂t,a(r̂t,a) is defined in line 6 of Algorithm 7. Now, by the definition of at (line 7 of

Algorithm 7), we have

P(at = a |H−
t−1) =

K∑
m=1

1

m
P(a ∈ Ct, |Ct| = m |H−

t−1) ,

where we introduced Ct := argmaxa∈[K] ϕ̂t,a. Let ϵt > 0 and continue the analysis conditioning

on the events where supa∈[K] |ϕt,a − ϕ̂t,a| ≤ ϵt. Then, we can write

P(at = a |H−
t−1) ≥ P(ϕ̂t,a > ϕ̂t,a′ , ∀a′ ̸= a |H−

t−1) ≥ P(ϕt,a > ϕt,a′ + 2ϵt , ∀a′ ̸= a |H−
t−1) ,

where in the first inequality we considered the case when a ∈ Ct and |Ct| = 1, and in

the second inequality we considered the worst case scenario where ϕ̂t,a = ϕt,a − ϵt and

ϕ̂t,a′ = ϕt,a′ + ϵt. Assumption 7.1.6(iv) and the additive noise in µt̃ imply that ⟨µt̃, Xa⟩ is

an absolutely continuous random variable for each a ∈ [K], which yields that {ϕt,a}a∈[K] is

uniformly distributed on [0, 1]. Furthermore, {ϕt,a}a∈[K] are also independent due to Assump-

tion 7.1.6(iii). Thus we have

P(at = a |H−
t−1) ≥

∫ 1

0

(
P(ϕt,a′ < µ− 2ϵt)

)K−1
dµ =

∫ 1

2ϵt

(µ− 2ϵt)
K−1 dµ =

(1− 2ϵt)
K

K
.

Finally, thanks to Assumption 7.1.6(ii) we can invoke the DKWM inequality to appropriately

bound ϵt in high probability for all t sufficiently large.

The property in Proposition 7.3.3 guarantees that, for sufficiently large t, the policy can

get arbitrarily close to satisfy history-agnostic demographic parity in (7.2). In particular this

allows us to control ∥xmax∥V −1
t̃

by using a standard matrix concentration inequality (Tropp,

2011, Theorem 3.1) on a special decomposition of Vt̃, thereby enabling the following result

(proof in Section 7.7).

Lemma 7.3.4. Let Assumption 7.1.6 hold, at be generated by Algorithm 7, τ1 = 32K3 log3/2
(
5K e/δ

)
,

τ2 =
54L2

λ+
min(Σ)

log(4dδ ) and τ = 4max(τ1, τ2)+3. Then, with probability at least 1− 3δ
4 , for all t ≥ τ

we have

∥µ∗ − µt̃∥Vt̃
∥x∥V −1

t̃

≤ 8L√
λ+min(Σ) · t

[
b1
√
d log((8 + 4tmax(L2/λ, 1))/δ) + λ

1
2 ∥µ∗∥2

]
,

where b1 = λ
1
2 +R+ L, Σ := K−1

∑K
a=1 E

[
XaX

⊤
a

]
and λ+min(Σ) is its smallest nonzero eigen-

value.
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Figure 7.1: Simulation Results. First image is a density plot of the reward distributions while the
second and third plot show the standard and fair pseudo-regrets, with mean (solid lines) ± standard
deviation (shaded region) over 10 runs. To approximate the true reward CDF for each group we use
the empirical CDF with 107 samples.

Finally we obtain the desired high probability regret bound by combining Lemma 7.3.2 with

Lemma 7.3.4 and summing over the T rounds (see Section 7.7 for a proof).

Theorem 7.3.5. Let Assumption 7.1.6 hold and at be generated by Algorithm 7. Then, with

probability at least 1− δ, for any T ≥ 1 we have

RF(T ) ≤
96ML√
λ+min(Σ)

[
(λ

1
2 +R+ L)

√
dT log((8 + 4T max(L2/λ, 1))/δ) +

√
λT ∥µ∗∥2

]

+ 8

√
T log(8KT/δ)

3
+ τ ,

with τ defined in Lemma 7.3.4. Hence RF(T ) = O(K3 log3/2(K/δ) +
√
dT log(KT/δ)).

The regret bound in Theorem 7.3.5 has two terms. The O(K3 log3/2(K)) term describes

the rounds needed to satisfy Proposition 7.3.3 with c = 1/2. The remaining part, which is of

order O(
√
dT log(KT )) is instead associated to the convergence of the empirical CDF and to

the bandit performance. Indeed, it recalls the standard regret bound holding for finite-action

linear contextual bandits Auer (2002); Chu et al. (2011); Lattimore and Szepesvári (2020).

7.4 Simulation with diverse reward distributions

We present an illustrative proof of concept experiment which simulates groups with diverse

reward distributions. We set K = 4, ηt = 2ξt, where ξt has standard normal distribution,

Xa = BaYa + ca where each coordinate of Ya ∈ R4 is an independent sample from the uni-

form distribution on [0, 1], Ba ∈ R(4K+1)×4 is such that Xa contains Ya starting from the 4a-th

coordinate and ca has all the coordinates set to zero except for the last which is set to 3a to

simulate a group bias. In this setup µ∗ acts differently on each group, in particular, we note

that µ∗ ∈ R4K+1 has its last coordinate multiplying the group bias in ca, which we set to 1,

and 4 group-specific coordinates, which we set to manually picked values between 0 and 9.

Results are shown in Figure 7.1, where we compare our greedy policy in Algorithm 7 with

OFUL Abbasi-Yadkori et al. (2011), both with regularization parameter set to 0.1, and with the
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Figure 7.2: US Census Results. Group = Ethnicity. First image shows mean (colored bars) and
std (thinner black bars), while the other two show the mean (solid lines) ± standard deviation (shaded
region) over 10 runs. To compute the reward CDF for each group we use the empirical CDF on 5K
samples from D2. Percentage of selected groups is computed by dividing the number of candidates
of a given group selected by the policy by the total number of candidates of that group received by the
agent. GX with X ∈ {1, . . . , 6}, stands for group X.

Uniform Random policy. We observe that, as expected from our analysis, our policy achieves

sublinear fair pseudo-regret, while also having better-than random, although linear, standard

regret. Additional details and an experiment on US census data with gender as the sensitive

group are in Section 7.7.

7.5 Multiple candidates for each group

In this section, we analyze the more realistic case where contexts from a given arm do not

necessarily belong to the same group. The complete analysis is presented in Section 7.7. In

particular, we assume that at each round t, the agent receives {(Xt,a, st,a)}Ka=1, which are K

i.i.d. random variables where st,a ∈ [G] is the sensitive group of the context Xt,a ∈ Rd and

G is the total number of groups. This setting can model for example a hiring scenario where

at each round the employer has to choose among candidates belonging to different ethnic

groups, some of which are minorities and hence have a small probability P(st,a = i) of being

in the pool of received candidates. By naturally adapting the definition of fair-regret RF(T ), the

Fair-Greedy policy and Assumption 7.1.6 to this setting, with probability 1 − δ we obtain the

following regret bound (see Corollary 7.7.16 in Section 7.7).

RF(T ) = O

(
G log(GT/δ)

Kqmin
+

(KG)3/2 log3/2(G/δ)

q
3/2
min

+

√
dT log (GT/δ)

(1 +K/G)qmin)

)
(7.3)

where qmin = mini∈[G] P(st,a = i)G, so that qmin = 1 if and only if each group has equal

probability of being sampled and qmin > 0 without loss of generality. (7.3) is similar to The-

orem 7.3.5, having the same dependency on δ and T but an improved dependency on the

number of arms K when K > G, since contexts from all arms can be used to estimate the
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CDF of each group. The first term in (7.3) comes from the application of the Chernoff bound

to lower bound the number of candidates in each group received by the agent, which is now

random.

US Census experiments. Group = Ethnicity. We test this setting in practice by simulating

the hiring scenario discussed above with data from the US Census containing the income and

other useful indicators of several individuals in the United States. This data is accessed via

the FolkTables library (Ding et al., 2021). In particular, at each round, we sample K = 10

candidates at random from the population containing the G = 6 largest ethnic groups2, the

reward is a previously computed linear estimate of the income, while the noisy reward is the

true reward plus some small gaussian noise. We compare the Fair-Greedy Policy with OFUL

(Abbasi-Yadkori et al., 2011), Greedy (selects the candidate with the best estimated reward)

and Uniform Random in Figure 7.2. Similarly to the synthetic experiment in Section 7.4,

the Fair-greedy policy achieves the best fair pseudo-regret and standard regret better than

Uniform Random. Note that Greedy outperforms OFUL, which is too conservative in this

scenario. Furthermore, the Fair-Greedy policy selects approximately the same percentage

of candidates from each group, similarly to Uniform Random, while OFUL and Greedy select

smaller percentages from G2, G3, G5 and G6. In Section 7.7 we provide more details and a

comparison with two oracle fair policies which shows that knowing µ∗ plays a more important

role than knowing the true reward CDFs of each group.

7.6 Conclusions and future work

We introduced the concept of group meritocratic fairness in linear contextual bandits, which

states that a fair policy should select, at each round, the candidate with the highest relative

rank in the pool. This allows us to compare candidates coming from different sensitive groups,

but it is hard to satisfy since the relative rank is not directly observed and depends on both

the underlying reward model and on the rewards distribution for each group. After defining an

appropriate fair pseudo-regret we analyzed a greedy policy and proved that its fair pseudo-

regret is sublinear with high probability.

This result was possible since we restricted the analysis to the case where the contexts of

different groups are independent random variables and the rewards are absolutely continuous.

Relaxing these assumptions is a challenging avenue for future work. In particular, without the

independence of contexts across arms, different approaches relying on confidence intervals

might be necessary. Other two interesting directions are (i) to study the optimality of the

proposed results and establishing lower bounds for any algorithm which minimises the fair

pseudo-regret and (ii) to design a learning policy which aims at achieving a tradeoff between

group meritocratic fairness and reward maximization.
2We remove groups with less than 5K individuals to compute accurately the true CDFs for the fair regret.

214



7.7 Proofs and additional results

Auxiliary lemmas

Lemma 7.7.1. Let n ∈ N, and assume that Y, ν are independent random variables in Rn,

such that Y is absolutely continuous and ν ̸= 0, almost surely. Then, ν⊤Y is an absolutely

continuous random variable.

Proof. It is enough to show that for any A ⊂ R with zero Lebesgue measure, P(ν⊤Y ∈ A) = 0.

Let A ⊆ R, then we can write

P(ν⊤Y ∈ A) = E[P(ν⊤Y ∈ A | ν)] .

We proceed the proof by controlling the term P(ν⊤Y ∈ A | ν). We know that ν ̸= 0 almost

surely. Now, since Y and ν are independent, let ν = w for a fixed w ∈ Rn such that w ̸= 0,

then we have that

P(w⊤Y ∈ A) =

∫
y∈Rn

1

{
w⊤

∥w∥2
Y ∈ A′

}
fY (y) dy ,

where we defined A′ :=
{

x
∥w∥2

: x ∈ A
}

. Now consider the change of basis matrix R =

(v1, . . . , vn)
⊤, such that v1 = w

∥w∥2
, with RR⊤ = In. By assigning Ŷ = R⊤Y , we can write

P(w⊤Y ∈ A) =

∫
ŷ∈Rn

1
{
ŷ1 ∈ A′} fY (Rŷ) dŷ .

Since we assume that Y is an absolutely continuous random variable, there exists MY > 0,

such that supy∈Rn fY (y) ≤MY almost surely, which allows us to write

P(w⊤Y ∈ A) ≤MY

∫
ŷ∈Rn

1
{
ŷ1 ∈ A′} dŷ .

Finally, it is straightforward to check that if A has a zero Lebesgue measure, then A′ also has

a a zero Lebesgue measure, which gives P(w⊤Y ∈ A) = 0.

Lemma 7.7.2 (Lipschitz CDF). Let n ∈ N, ν ∈ Rn/{0} and b ∈ R. Let also Y be an absolutely

continuous random variable with values in Rn, with probability density function fY . Then the

CDF of Z = ⟨ν, Y ⟩+ b, namely FZ , is Lipschitz continuous. More specifically

|FZ(r)−FZ(r
′)| ≤M ′|r − r′| ∀r, r′ ∈ R ,

where M ′ = maxz∈R fZ(z).

Proof. Since ν ̸= 0 and Y is absolutely continuous, Z is also absolutely continuous with
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probability density fZ (see Lemma 7.7.1). Furthermore, if r′ ≤ r, we can write

FZ(r)−FZ(r
′) =

∫ r

−∞
fZ(t) dt−

∫ r′

−∞
fZ(t) dt =

∫ r

r′
fZ(t) dt ≤M ′(r − r′).

Applying the same reasoning to the case when r ≤ r′ concludes the proof.

Lemma 7.7.3. Let {Xa}Ka=1 be K random variables with values in Rd and such that they are all

0 with probability strictly less than one. Define Σ = K−1
∑K

a=1 E[XaX
⊤
a ] and let Σ = USU⊤ be

its compact eigenvalue decomposition with U ∈ Rd×r, S ∈ Rr×r with 1 ≤ r ≤ d. Assume that S

is invertible. Then, for any y ∈ ∪K
a=1Supp(Xa), we have UU⊤y = y and λ+min(Σ) ∥y∥

2
2 ≤ y⊤Σy,

where λ+min(Σ) is the smallest non-zero eigenvalue of the matrix Σ.

Proof. LetX be a random variable with the distribution P(X) = K−1
∑K

a=1 P(Xa). It is straight-

forward to check that Σ = E[XX⊤], and y ∈ Supp(X). We can also write y = y1 + y2 where

y2 ∈ Ker(Σ) := {z ∈ Rd : Σz = 0} and y1 ∈ Ker(Σ)⊥ := {z ∈ Rd : ⟨z, x⟩ = 0, ∀x ∈ Ker(Σ)}.

This implies that

y⊤2 Σy2 = E[y⊤2 XX⊤y2] = 0 .

Now, let f(x) = (y⊤2 x)
2. Then, f(x) ≥ 0, for any x ∈ Rd and f(y) = ∥y2∥42. Furthermore,

since, f(x) is a continuous function there exists ϵ > 0, such that for any z ∈ B(y, ϵ) = {x ∈
Rd : ∥x− y∥2 < ϵ}, f(z) ≥ ∥y2∥42

2 . On the other hand, since y ∈ Supp(X), P(X ∈ B(y, ϵ)) > 0.

Hence, we can write

0 = y⊤2 Σy2 = E[f(X)] ≥ E[f(X)1 {X ∈ B(y, ϵ)}] ≥
∥y2∥42
2

P(X ∈ B(y, ϵ)) ,

therefore y2 = 0 which implies that y ∈ Ker(Σ)⊥. Since UU⊤y is the orthogonal projection of

y onto Ker(Σ)⊥ we conclude that y = UU⊤y, y⊤ = y⊤UU⊤ and

y⊤Σy = y⊤USU⊤y ≥ λ+min(Σ)y
⊤UU⊤y = λ+min(Σ) ∥y∥

2
2 .

Proof of Lemma 7.2.1

Proof. If t < 3 then µt̃ = 0 and at ∼ U [[K]] and the statement follows. If t ≥ 3, Let µ ∈ S :=

{µ′ ∈ Rd : µ′⊤Ba ̸= 0∀a ∈ [K]}, r̂i,a = ⟨µ,Xi,a⟩ and t′ = t− t̃−1. Then by Lemma 7.7.1 r̂i,a is

absolutely continuous. Given a permutation of indices j = (j1, . . . , jt′) where ji ∈ {t̃+1, . . . , t},

for i ∈ [t′]. Let Ωa be the set of the events of {Xi,a}ti=t̃+1
and P be the set of all permutations

of the indices {t̃+ 1, . . . , t}. Consider the event

Ea,j = {ω ∈ Ωa : r̂j1,a < · · · < r̂jt′ ,a } .

216



Since {r̂i,a}ti=t̃+1
are absolutely continuous, we have for all k ̸= i, P(r̂ji,a = r̂jk,a) = 0 and this

yields Ωa = ∪j∈PEa,j and Ea,j ∩ Ea,j′ = ∅ for all j ̸= j′. Furthermore, since {r̂i,a}ti=t̃+1
are

i.i.d. we have that pa := P(Ea,j) = P(Ea,j′) for all j ̸= j′. In particular, since |P | = t′! we have

pa = 1/(t′!).

Let ϕa = (t′ − 1)−1
∑t−1

i=t̃+1
1 {r̂i,a < r̂t,a}. Let b ∈ {0, . . . , t − 1} and let Pb = {j ∈ P :

jb+1 = t}. We have that |Pb| = (t′ − 1)! and

P(ϕa = b/(t′ − 1)) =
∑
j∈Pb

P(Ea,j) = (t′ − 1)!pa =
1

t′
.

As a consequence, for all a ∈ [K], ϕa is uniform over {0, 1/(t′−1), . . . , 1}. Since {ri,a}i∈[t+1],a∈[K]

are mutually independent we have that {ϕa}a∈[K] are i.i.d. discrete uniform random variables.

As a consequence, let â = U
[
argmaxa′∈[K] ϕ̂a

]
we have that P(â = a) = 1/K. Using the

definition of â we have

P(at = a) =
1

K
P(µt̃ ∈ S) + P(at = a |µt̃ ∈ Sc)P(µt̃ ∈ Sc) =

1

K
,

where the last equality is derived by the fact that by the construction of µt̃, P(µt̃ ∈ S) = 1.

Proofs of results in Section 7.3

The following result is used in the Proof of Lemma 7.3.2. Its proof is obtained by using the

Dvoretzky–Kiefer–Wolfowitz-Massart inequality Dvoretzky et al. (1956); Massart (1990) com-

bined with a union bound.

Lemma 7.7.4. Let Assumption 7.1.6(ii) hold and F̂t,a(r), and µt̃ to be generated by Algo-

rithm 7. Let Za := ⟨µt̃, Xa⟩ and denote with FZa its CDF, conditioned on µt̃. Then, with

probability at least 1− δ we have that for all 3 ≤ t ≤ T

sup
a∈[K],r∈R

|F̂t,a(r)−FZa(r)| ≤
√

log(2KT/δ)

t− 1
.

Proof. Let 3 ≤ t ∈ T and recall that t̃ = ⌊(t − 1)/2⌋. Note that from Assumption 7.1.6(ii),

for all a ∈ [K], {⟨µt̃, Xi,a⟩}t−1
i=t̃+1

are i.i.d copies of Za, conditioned on µt̃. Since F̂t,a(r) is the

empirical CDF of Za conditioned on µt̃, we can apply the Dvoretzky–Kiefer–Wolfowitz-Massart

inequality Dvoretzky et al. (1956); Massart (1990) to obtain

P

(
sup
r∈R

|F̂t,a(r)−FZa(r)| ≥

√
log(2/δ′)

2(t− 1− t̃)

)
≤ δ′ .

Therefore, since t̃ ≤ (t− 1)/2 we deduce that P [Et,a] ≤ δ′ , where

Et,a =

{
{Xi,a}t−1

i=t̃+1
, µt̃ : sup

r∈R
|F̂t,a(r)−FZa(r)| ≥

√
log(2/δ)

t− 1

}
.
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Consequently, by applying a union bound we obtain

P
[
∪T
i=1 ∪K

a=1 Et,a

]
≤

T∑
i=1

K∑
a=1

P(Et,a) ≤ KTδ′ ,

Finally, by substituting δ′ = δ/(KT ) and computing the probability of the complement of

∪T
i=1 ∪K

a=1 Et,a, we obtain the desired result.

Proof of Lemma 7.3.1

Proof. For every a ∈ [K], by Assumption 7.1.6(iv), we have that Xa = BaYa + ca where

Ya ∈ Rda is absolutely continuous with density fa. Let ν∗ := µ∗⊤Ba, ν := µ⊤Ba, b∗ := ⟨µ∗, ca⟩,
b := ⟨µ, ca⟩. Then we have

Za = ⟨µ∗, Xa⟩ = ⟨ν∗, Ya⟩+ b∗ , and Z̃a = ⟨µ,Xa⟩ = ⟨ν, Ya⟩+ b .

From Assumption 7.1.6(iv) we also have that ν∗ ̸= 0, hence, by applying Lemma 7.7.2 with

ν = ν∗ and Y = Ya and by taking the maximum over a ∈ [K], the statement (i) follows.

We now prove (ii). Since Ya is absolutely continuous we can write for any r ∈ R

|Fa(r)−FZ̃a
(r)| = |F⟨ν∗,Ya⟩+b∗(r)−F⟨ν,Ya⟩+b(r)|

≤
∫
y∈Rda

∣∣∣∣1 {⟨ν∗, y⟩+ b∗ ≤ r} − 1 {⟨ν, y⟩+ b ≤ r}
∣∣∣∣fa(y) dy .

Now, by adding and subtracting q(y) := ⟨ν∗ − ν, y⟩+ b∗ − b and letting r′ := r − b∗ we have

|Fa(r)−FZ̃a
(r)| ≤

∫
y∈Rda

∣∣∣∣1{⟨ν∗, y⟩ ≤ r′
}
− 1

{
⟨ν∗, y⟩ ≤ r′ + q(y)

}∣∣∣∣fa(y) dy
≤
∫
y∈Rda

1
{
r′ − |q(y)| ≤ ⟨ν∗, y⟩ ≤ r′ + |q(y)|

}
fa(y) dy .

By Cauchy-Schwarz inequality, for any y ∈ Supp(Ya), we get

|q(y)| ≤ |⟨ν∗ − ν, y⟩+ b∗ − b| ≤ |⟨µ∗ − µ,Bay + ca⟩| ≤ ∥µ∗ − µ∥ ∥xmax∥∗ ,

where we defined ∥xmax∥∗ := maxx∈∪K
a=1Supp(Xa)

∥x∥∗ = maxy∈∪K
a=1Supp(Ya)

∥Bay + ca∥∗. We

now let κ = ∥µ∗ − µ∥ ∥xmax∥∗, and note that

|Fa(r)−FZ̃a
(r)| ≤

∫
y∈Rda

1
{
r′ − κ ≤ ⟨ν∗, y⟩ ≤ r′ + κ

}
fa(y) dy .

To control the above integral, we provide a proper change of variables. To this end, since by the

assumption ν∗ ̸= 0, we let {v1, . . . , vda} be an orthonormal basis of Rda , with v1 = ν∗/ ∥ν∗∥2.
Moreover, let R = (v1, . . . , vda) to be the corresponding change of basis matrix. Then, for
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all y ∈ Rda , we can always write y = Rŷ, where ŷi = ⟨y, vi⟩, with ŷ1 = ⟨ν∗,y⟩
∥ν∗∥2

. Hence we

denote with Ŷa = R⊤Ya which now has the first coordinate parallel to ν∗. Using the change

of variables formula for multivariate integrals and noting that we are applying a rotation and

hence |det(R)| = 1 and fRŶa
(Rŷ) = fŶa

(ŷ)/|det(R)| = fŶa
(ŷ) we get

|Fa(r)−FZ̃a
(r)| ≤

∫
ŷ∈Rda

1

{
r′ − κ

∥ν∗∥2
≤ ŷ1 ≤

r′ + κ

∥ν∗∥2

}
fŶa

(ŷ) dŷ .

Let z = (ŷ2, . . . , ŷda). By Fubini’s Theorem, and with the convention that fŶa
(ŷ1, z) = fŶ (ŷ1, z1, . . . , zda−1)

we have

|Fa(r)−FZ̃a
(r)| ≤

∫
ŷ1∈R

1

{
r′ − κ

∥ν∗∥2
≤ ŷ1 ≤

r′ + κ

∥ν∗∥2

}∫
z∈Rda−1

fŶa
(ŷ1, z) dz dŷ1

=

∫
ŷ1∈R

1

{
r′ − κ

∥ν∗∥2
≤ ŷ1 ≤

r′ + κ

∥ν∗∥2

}
fŶ1

(ŷ1) dŷ1 ,

where fŶ1
(ŷ1) :=

∫
z∈Rda−1 fŶ (ŷ1, z1, . . . , zda−1) dz is the marginal density of Ŷ1 = ⟨ν∗,Ya⟩

∥ν∗∥2
, and

we highlight that Ŷ1 = (Za − b∗)/ ∥ν∗∥2. Finally note that

max
y1∈R

fŶ1
(y1) = ∥ν∗∥2max

y1∈R
fZa(y1) = ∥ν∗∥2M ,

which yields

|Fa(r)−FZ̃a
(r)| ≤ 2κM ,

and (ii) follows by substituting the definition of κ.

Proof of Proposition 7.3.3

Proof. Recall the definition of Algorithm 7. For any a ∈ [K] let r̂t,a = µ⊤
t̃
Xt,a, which is the esti-

mated reward for arm a, at round t. Note that µt̃ and Xt,a are independent random variables.

Furthermore, denote with Fr̂t,a the CDF of r̂t,a conditioned on µt̃, and let

ϕt,a := Fr̂t,a(r̂t,a) , and ϕ̂t,a := F̂t,a(r̂t,a) .

Now, by the definition of the algorithm, we have

P(at = a |H−
t−1) =

K∑
m=1

1

m
P(a ∈ Ct, |Ct| = m |H−

t−1) ,

219



where we introduced Ct := argmaxa∈[K] ϕ̂t,a. Let ϵt > 0 and continue the analysis conditioning

on the events where supa∈[K] |ϕt,a − ϕ̂t,a| ≤ ϵt. Then, we can write

P(at = a |H−
t−1) ≥ P(ϕ̂t,a > ϕ̂t,a′ , ∀a′ ̸= a |H−

t−1) ≥ P(ϕt,a > ϕt,a′ + 2ϵt , ∀ a′ ̸= a |H−
t−1) ,

where in the first inequality we considered the case when a ∈ Ct and |Ct| = 1. In the second

inequality we considered the worst case scenario where ϕ̂t,a = ϕt,a − ϵt and ϕ̂t,a′ = ϕt,a′ + ϵt.

Recall that by the construction of the algorithm µt̃ = V −1
t̃
X⊤

1:t̃
r1:t̃ + (1/

√
dt̃) · γt̃. for all a ∈ [K],

the additive noise (1/
√
dt̃)γt̃ assures that µ⊤

t̃
Ba ̸= 0, almost surely. Therefore, by Lemma 7.7.1

r̂t,a = ⟨µt̃, Xt,a⟩ conditioned on µt̃ is absolutely continuous.

assumption 7.1.6(iii) and (Casella and Berger, 2021, Theorem 2.1.10) yield that {ϕt,a}a∈[K]

are independent and uniformly distributed on [0, 1] and in turn that

P(at = a |H−
t−1) ≥

∫ 1

0

(
P(ϕt,a′ < µ−2ϵt)

)K−1
dµ =

∫ 1

2ϵt

(µ−2ϵt)
K−1 dµ =

(1−2ϵt)
K

K
. (7.4)

We continue by computing an ϵt for which supa∈[K] |ϕt,a − ϕ̂t,a| ≤ ϵt holds with high proba-

bility. Observing that, conditioned on µt̃, F̂t,a is the empirical CDF of Fr̂t,a , we can use the

Dvoretzky–Kiefer–Wolfowitz-Massart inequality to obtain, for any a ∈ [K], t ≥ 3, and s ≥ 0

P
(
|ϕt,a − ϕ̂t,a| ≥ s

)
≤ 2 exp

(
−2s2(t− t̃− 1)

)
.

Now, let τ0 := 3 + 8 log3/2
(
5K e/δ

)
/
(
1− K

√
c
)3. By applying the union bound, we can write

P

(
sup

t≥τ0,a∈[K]
|ϕt,a − ϕ̂t,a| ≥ s

)
≤ K

∞∑
t=τ0

P
(
|ϕt,a − ϕ̂t,a| ≥ s

)
≤ 2K

∞∑
t=τ0

exp
(
−2s2(t− t̃− 1)

)
.

Since t̃ = ⌊ t−1
2 ⌋, it is straightforward to check that

P

(
sup

t≥τ0,a∈[K]
|ϕt,a − ϕ̂t,a| ≥ s

)
≤ 2K

∫ ∞

t=τ0−1
exp

(
−s2t

)
dt ≤ 2Ks−2 exp

(
−s2(τ0 − 1)

)
.

Now, for any δ ∈ (0, 1), by assigning s =
√

log(4K(τ0−1)/δ)
τ0−1 , we get

P

 sup
t≥τ0,a∈[K]

|ϕt,a − ϕ̂t,a| ≥

√
log(4K(τ0 − 1)/δ)

τ0 − 1

 ≤ δ

2 log (4K(τ0 − 1)/δ)
≤ δ

4
, (7.5)

where from τ0 ≥ 3, δ < 1 =⇒ 4K(τ0 − 1)/δ ≥ 8 ≥ e2 =⇒ log (4K(τ0 − 1)/δ) ≥ 2 we obtain
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the last inequality. From (7.4), it follows that

inf
t≥τ0,a∈[K]

P
(
at = a|H−

t−1

)
≥

(1− 2 supt≥τ ϵt)
K

K
.

Moreover, form (7.5), by letting ϵt =
√

log(4K(τ0−1)/δ)
τ0−1 , with probability at least 1− δ

4 , we have

inf
t≥τ,a∈[K]

P
(
at = a|H−

t−1

)
≥ 1

K

1− 2

√√√√√ log(4K(τ0 − 1)/δ)

τ0 − 1︸ ︷︷ ︸
(I)


K

. (7.6)

For the term (I) in the above, using log(x) ≤ log(5 e/4)x1/3 and x ≥ x2/3 for any x ≥ 1 we

deduce that

(I) =
log(4K/δ) + log(τ0 − 1)

τ0 − 1
≤ log(4K/δ) + log(5 e/4)

(τ0 − 1)2/3
=

log(5K e/δ)

(τ0 − 1)2/3
.

Now, by substituting τ0 = 3 + 8 log3/2
(
5K e/δ

)
/
(
1 − K

√
c
)3, we get that (I) ≤ 1

4 (1− K
√
c)

2 and

conclude the proof by plugging this inequality in (7.6).

Proof of Lemma 7.3.4

We start by establishing some required lemmas.

Lemma 7.7.5. Let Σ, τ1, τ2 be defined in Lemma 7.3.4, τ3 = max (τ1, τ2), Σ = USU⊤ be the

compact eigenvalue decomposition of Σ, with U ∈ Rd×r, S ∈ Rr×r is a diagonal matrix with

non-zero diagonal elements, and U⊤U = Ir. Denote Ŝt0 =
∑t̃

i=1 U
⊤Xi,aiX

⊤
i,ai
U, where for

i ∈ [t̃], ai is given by Algorithm 7. Then with probability at least 1 − δ
2 , for any t ≥ 2τ3 + 3 we

have

λmin

(
Ŝt0

)
≥

(t̃− τ3)λ
+
min(Σ)

4
.

Proof. Let S̃t0 :=
∑t̃

i=1 E
[
U⊤Xi,aiX

⊤
i,ai
U |H−

i−1

]
. First, note that for any τ3 ≤ i ≤ t̃, we can

write

E
[
U⊤Xi,aiX

⊤
i,aiU |H−

i−1

]
=

K∑
a=1

E
[
U⊤Xi,aiX

⊤
i,aiU |H−

i−1, ai = a
]
P
(
ai = a |H−

i−1

)
=

K∑
a=1

E
[
U⊤Xi,aX

⊤
i,aU

]
P
(
ai = a |H−

i−1

)
,

where the last equality holds based on the fact thatXi,aiX
⊤
i,ai

conditioned on ai, is independent

from H−
i−1. Then, since t ≥ 3 + 64K3 log3/2

(
5K e/δ

)
, by utilizing Proposition 7.3.3 with c = 1

2
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and noting that 1/(1 − K
√

1/2) ≤ 2K for all K ≥ 1, with probability at least 1 − δ
4 , we have

P(ai = a |H−
i−1) ≥

1
2K . Therefore, with probability at least 1− δ

4 , we obtain

λmin

(
E
[
U⊤Xi,aiX

⊤
i,aiU |H−

i−1

])
≥ 1

2
λmin

(
K−1

K∑
a=1

U⊤E
[
XaX

⊤
a

]
U

)
=
λ+min (Σ)

2
,

and consequently, with probability at least 1− δ
4 we have

λmin(S̃t̃) ≥
t̃∑

i=1

λmin(U
⊤E[Xi,aiX

⊤
i,ai |H

−
i−1]U) ≥ (t̃− τ3) ·

λ+min(Σ)

2
, (7.7)

where in the last two displays we used the concavity attribute of the function λmin(·). Note that

{Xi,ai}
∞
i=1, is an adaptive sequence with respect to the filtration

{
H−

i

}∞
i=0

, with∥∥∥U⊤Xi,aiX
⊤
i,aiU

∥∥∥
op

≤ ∥Xi,ai∥
2
2 ≤ L2 ,

for any i ∈ [t̃]. Let ι = t̃ − τ3. Now, by invoking (Tropp, 2011, Theorem 3.1) (with δ = 1
2 and

µ = λ+min(Σ)/2, where δ, µ are constants that appear in the latter theorem), we have

P
(
λmin

(
Ŝt0

)
≤
ιλ+min(Σ)

4
and λmin

(
S̃t0

)
≥
ιλ+min(Σ)

2

)
≤ d ·

e− 1
2

1
2

1
2


ιλ+

min
(Σ)

4L2

≤ q ,

where we introduced q = d · exp(− ιλ+
min(Σ)

27L2 ), and we used the inequality e−
1
2 · 1

2

− 1
2 ≤ e−

4
27 .

Note that since t̃ ≥ τ3 = 54L2

λ+
min(Σ)

log(4dδ ), we have q ≤ δ
4 . Let p = P[λmin(S̃t0) ≥

ιλ+
min(Σ)
2 ], then

we can write

P
(
λmin

(
Ŝt0

)
≤
ιλ+min(Σ)

4

∣∣∣∣λmin

(
S̃t0

)
≥
ιλ+min(Σ)

2

)
≤ δ

4p
,

and accordingly

P
(
λmin

(
Ŝt0

)
≥
ιλ+min(Σ)

4
and λmin

(
S̃t0

)
≥
ιλ+min(Σ)

2

)
≥ 1− δ

2
,

where we used p ≥ 1 − δ
4 , which follows from (7.7). Substituting ι = t̃ − τ3 gives the final

result.

Lemma 7.7.6. Let x ∈ ∪K
a=1Supp(Xa) and τ3 be defined in Lemma 7.7.5, then with probability

at least 1− δ
2 , for all t ≥ 2τ3 + 3 we have

∥x∥V −1
t̃

≤ 2L√
λ+min(Σ)(t̃− τ3)

.
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Proof. Note that if x = 0 it is straightforward to check that the statement holds. So without

loss of generality we assume that x ∈ S, where S = ∪K
a=1Supp(Xt,a) − {0}. Consider the

compact singular value decomposition Σ = USU⊤ where U ∈ Rd×r, S ∈ Rr×r is a diagonal

matrix with non-zero diagonal elements (due to Assumption 7.1.6(iv)) and U⊤U = Ir. Denote

Ŝt̃ = U⊤Σ̂t̃U . For any x ∈ S we have from Lemma 7.7.3 that UU⊤x = x, and x⊤UU⊤ = x⊤.

First, we claim that

U⊤(Σ̂t̃ + λId)
−1U = (Ŝt̃ + λIr)

−1 .

To prove the above claim, it is enough to show that

(Ŝt̃ + λIr)U
⊤(Σ̂t̃ + λId)

−1U = U⊤(Σ̂t̃ + λId)
−1U(Ŝt̃ + λIr) = Ir .

Note that

(Ŝt̃ + λIr)U
⊤(Σ̂t̃ + λId)

−1U =
(
U⊤Σ̂t̃U + λIr

)
U⊤(Σ̂t̃ + λId)

−1U

= U⊤(Σ̂t̃UU
⊤ + λId

)(
Σ̂t̃ + λId

)−1
U

= U⊤(Σ̂t̃ + λId
)(
Σ̂t̃ + λId

)−1
U = Ir .

With similar steps one can show that U⊤(Σ̂t̃+λId)
−1U(Ŝt̃+λIr) = Ir, and therefore U⊤(Σ̂t̃+

λId)
−1U = (Ŝt̃ + λIr)

−1. By exploiting this fact, we can write

∥x∥2
V −1
t̃

= ∥x∥22
(

x

∥x∥2

⊤
(Σ̂t̃ + λId)

−1 x

∥x∥2

)
= ∥x∥22

(
x

∥x∥2

⊤
UU⊤(Σ̂t̃ + λId)

−1UU⊤ x

∥x∥2

)
= ∥x∥22

(
x

∥x∥2

⊤
U(Ŝt̃ + λIr)

−1U⊤ x

∥x∥2

)
= ∥x∥22

(
x⊤U

∥x⊤U∥2
(Ŝt̃ + λIr)

−1 U⊤x

∥U⊤x∥2

)
,

where the second and last equations are results of Lemma 7.7.3, and consequently

∥x∥2
V −1
t̃

≤ L2

λmin(Ŝt̃)
. (7.8)

On the other hand, from Lemma 7.7.5, with probability at least 1− δ
2 , we have

λmin

(
Ŝt0

)
≥

(t̃− τ3)λ
+
min(Σ)

4
. (7.9)
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Finally, by combining (7.8) and (7.9) with probability at least 1− δ
2 we have

∥x∥2
V −1
t̃

≤ 4L2

λ+min(Σ)(t̃− τ3)
.

Lemma 7.7.7. With probability at least 1− δ
4 , for all t ≥ 3 we have

∥µ∗ − µt̃∥Vt̃
≤ (λ

1
2 +R+ L)

√
d log((8 + 8t̃max(L2/λ, 1))/δ) + λ

1
2 ∥µ∗∥2 .

Proof. Recall that by the definition of Algorithm 7, we have µt̃ = V −1
t̃
X⊤

1:t̃
r1:t̃ + (1/d

√
t̃) · γt̃.

Therefore, we can write

∥µ∗ − µt̃∥Vt̃
≤
∥∥∥µ∗ − V −1

t̃
X⊤

1:t̃
r1:t̃

∥∥∥
Vt̃︸ ︷︷ ︸

(I)

+
ρ

d
√
t̃
∥γt̃∥Vt̃︸ ︷︷ ︸
(II)

.

We proceed the proof by providing upper bounds for (I) and (II). For (I), by invoking (Abbasi-

Yadkori et al., 2011, Theroem 2), with probability at least 1 − δ
8 , for all t ≥ 3, which implies

t̃ ≥ 1 we have

(I) ≤ R

√
d log((8 + 8t̃L2/λ)/δ) + λ

1
2 ∥µ∗∥2

≤ R

√
d log((8 + 8t̃max(L2/λ, 1))/δ) + λ

1
2 ∥µ∗∥2 .

On the other hand, since ρ ≤ 1, for term (II) we have

(II) ≤ 1

d
√
t̃
∥Vt̃∥

1
2
op ∥γt̃∥2 ≤

L+ λ
1
2

d
∥γt̃∥2 .

P
(
(II) ≥ (L+ λ

1
2 )
√

log(8d/δ)
)
≤ P

(
∥γt̃∥2 ≥ d

√
log(8d/δ)

)
≤ dP

(
|γ1,t̃| ≥

√
log(8d/δ)

)
≤ δ

8
.

Thus, by applying the union bound with probability at least 1− δ
8 , for all t ≥ 3 we have

(II) ≤ (L+ λ
1
2 )

√
log(8t̃d/δ) ≤ (L+ λ

1
2 )

√
d log((8 + 8t̃max(L2/λ, 1))/δ) .

Proof of Lemma 7.3.4. Recall that τ3 = max(τ1, τ2). From Lemma 7.7.6, with probability at
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least 1− δ
2 for all t ≥ 2τ3 + 3 we have

∥x∥V −1
t̃

≤ 2L√
λ+min(Σ)(t̃− τ3)

.

From Lemma 7.7.7, with probability at least 1− δ
4 for all t ≥ 3

∥µ∗ − µt̃∥Vt̃
≤ (λ

1
2 +R+ L)

√
d log((8 + 8t̃max(L2/λ, 1))/δ) + λ

1
2 ∥µ∗∥2 .

Thus, combining Lemmas 7.7.6 and 7.7.7, with probability at least 1− 3δ
4 for all t ≥ 2τ3 +3 we

have

∥µ∗ − µt̃∥Vt̃
∥x∥V −1

t
≤

2L√
λ+min(Σ)(t̃− τ3)

(
(λ

1
2 +R+ L)

√
d log((8 + 8t̃max(L2/λ, 1))/δ) + λ

1
2 ∥µ∗∥2

)
.

By the fact that t ≥ 4τ3 + 3, we have t̃ ≥ 2τ3, which implies 1√
t̃−τ3

≤
√

2
t̃
. We conclude the

proof by using the inequality t̃ ≥ t−3
2 ≥ t

8 , for all t ≥ 4.

Proof of Theorem 7.3.5

Proof. Combining Lemma 7.3.2 with Lemma 7.3.4 and using 1/(t − 1) ≤ 3/(4t) for all t ≥ 4

we obtain, with probability at least 1− δ and for all τ ≤ t ≤ T

Fa∗t
(⟨µ∗, Xt,a∗t

⟩)−Fat(⟨µ∗, Xt,at⟩) ≤ 4

√
log(8KT/δ)

3t

+
48ML√
λ+min(Σ)t

(
(λ

1
2 +R+ L)

√
d log((8 + 4tmax(L2/λ, 1))/δ) + λ

1
2 ∥µ∗∥2

)
.

By summing up the last inequality, with probability at least 1− δ we get

T∑
t=τ

[
Fa∗t

(⟨µ∗, Xt,a∗t
⟩)−Fat(⟨µ∗, Xt,at⟩)

]
≤ 8

√
T log(8KT/δ)

3

+
96ML√
λ+min(Σ)

(
(λ

1
2 +R+ L)

√
dT log((8 + 4T max(L2/λ, 1))/δ) +

√
λT ∥µ∗∥2

)
.

(7.10)

where the last display is obtained by the inequality
∑T

t=1 t
− 1

2 ≤ 2T
1
2 . On the other hand, for

t ∈ [T ], Fa∗t
(⟨µ∗, Xt,a∗t

⟩)−Fat(⟨µ∗, Xt,at⟩) ≤ 1, and we can write

τ∑
t=1

[
Fa∗t

(⟨µ∗, Xt,a∗t
⟩)−Fat(⟨µ∗, Xt,at⟩)

]
≤ τ . (7.11)
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By combining (7.10) and (7.11), we conclude the proof.

Experiments

In this section we include additional details on the simulation experiments in Section 7.4 and

an experiment on the US census data.

Additional details on the simulation

We use the following value for the underlying linear model used in Figure 7.1.

µ∗ = ( 4, 3, 7, 0︸ ︷︷ ︸
Group 1

, 8, 0, 0, 0︸ ︷︷ ︸
Group 2

, 5, 5, 0, 0︸ ︷︷ ︸
Group 3

, 2, 2, 2, 2︸ ︷︷ ︸
Group 4

, 1) .

Each slice of 4 coordinates of µ∗ affects a different group. Furthermore, since each coordinate

of Ya follows a standard uniform distribution, the resulting reward distributions for each group

follow weighted variants of the Irwin-Hall distribution (Hall, 1927).

Experiments on US census data

In this section, we present an experiment performed using the US Census data and the Falk-

Tables library3 Ding et al. (2021). In particular we construct a dataset with features similar to

the UCI Adult dataset but where the target is the person’s income instead of the binary vari-

able indicating if the income is more or less than 50K dollars. We use this target as a possibly

inaccurate proxy for how well a candidate will perform on the job, hence it will be used as the

noisy reward for the bandit problem.

Setup and Preprocessing. To setup the bandit problem, we construct 2 datasets, namely

D1 and D2, by selecting 500K males and 500K females random samples first from the 2017

US Census Survey, to assemble D1, and then from the 2018 survey to assemble D2. We use

D1 to find mean and standard deviation for each feature and also for the target. After that we

normalize features and target from D2 by subtracting the mean and dividing by the standard

deviation previously computed on D1. We then construct µ∗ as a ridge regression estimate

on the samples from D2 with the regularization parameter equal to 10−8. The regression

vector µ∗ will be used to compute the (true) rewards for the samples. We construct the bandit

problem with K = 2 arms/groups which correspond to the gender identities male and female.

At each round, the context vectors of one male and one female candidate are sampled from

D2 and after one of the two is selected by the policy, its corresponding noisy reward (i.e. its

income) is received by the agent.

Baselines. We compare our method, namely Fair-greedy (Algorithm 7), with the following

baselines.
3https://github.com/zykls/folktables
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Figure 7.3: US Census Results. Top two images are density and CDF plots of the reward distributions
while the bottom two plots are the standard and fair pseudo-regrets, with mean (solid lines) ± standard
deviation (shaded region) over 10 runs. To compute the reward PDF and CDF for each group we use
the empirical CDF on all 500K samples from D2.

• Uniform Random, which selects an arm uniformly at random at each round.

• OFUL Abbasi-Yadkori et al. (2011), with exploration parameter set to 0.1.

• Greedy, which computes the ridge regression estimate for the reward vector using all the

selected contexts and noisy rewards in the history and then selects the arm maximising

the estimated reward.

• Fair-greedy (Oracle CDF), which is a variant of Fair-greedy where all the selected con-

texts and noisy rewards in the history are used to compute the ridge regression estimate

and the empirical CDF of each group is replaced by the true CDF.

• Fair-greedy (Oracle rewards), which is another variant of Fair-greedy where the ridge

regression estimate is replaced by the true reward model µ∗ and all contexts in the
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history are used to compute the empirical CDF for each group.

Note that the last two methods are oracle methods because they rely either on the true CDF

of the rewards for each group or on µ∗, which are unknown to the agent. All methods using

a ridge regression estimate have the regularization parameter set to 0.1. We observed that

varying this parameter did not affect much the relative performance of the methods.

Results. The results and the reward distributions are illustrated in Figure 7.3. We note that

in this case, Greedy performs much better than OFUL, which appears to be too conservative

for this problem. In particular, the standard pseudo-regret of Greedy is unrivaled after 1000

rounds. Furthermore, since there is a large overlap in the distributions of rewards, our Fair-

greedy policy performs much better than the Uniform Random policy even in terms of standard

pseudo-regret, while it outperforms all non-oracle methods in terms of fair pseudo-regret. As

expected, the oracle methods both achieve a lower fair pseudo-regret than Fair-greedy, and

we note that knowing only the underlying model µ∗ is significantly more advantageous than

knowing only the CDF for each group.

Multiple candidates for each group

This section contains a rigorous treatement of the content in Section 7.5. We consider the

more realistic case where contexts from a given arm do not necessarily belong to the same

group. In particular, we assume that at each round t, the agent receives tuples {(Xt,a, st,a)}Ka=1,

where st,a ∈ [G] is the sensitive group of the context Xt,a ∈ Rd and G is the total number of

groups. After that the agent selects action at and subsequently receives the noisy reward

⟨µ∗, Xt,a⟩+ ηt

Note that we recover the original setting discussed in Section 7.1 when G = K and st,a = a

for every a ∈ [K], t ∈ N. A more realistic scenario is when {(Xt,a, st,a)}Ka=1 are i.i.d., and the

distribution represents e.g. the underlying population of candidates, where P(st,a = i) is the

same for all a ∈ [K] and can be small when the group i is a minority. The following analysis

applies to both cases.

We impose the following assumption, which is a natural extension of Assumption 7.1.6.

Assumption 7.7.8. Let µ∗ ∈ Rd be the underlying reward model. We assume that:

(i) The noise random variable ηt is zero mean R-subgaussian, conditioned on Ht−1.

(ii) For any a ∈ [K], let (Xa, sa) be a random variable with values in Rd× [G] and ∥Xa∥2 ≤ L

almost surely. {(Xt,a, st,a)}Tt=1 are i.i.d. copies of (Xa, sa). Xa conditioned to sa = i is a

copy of the random variable X̂i which is independent on the arm, for every a ∈ [K].

(iii) For every a ∈ [K] Xa conditioned to sa is independent from (Xa′ , sa′) for any a′ ̸= a.
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(iv) For every i ∈ [G], then there exist di ≥ 1, an absolutely continuous random variable Yi
with values in Rdi admitting a density fi, Bi ∈ Rd×di and ci ∈ Rd such that B⊤

i Bi = Idi ,

X̂i = BiYi + ci and µ∗⊤Bi ̸= 0 .

We define F(r, i) = P(⟨µ∗, X̂i⟩ ≤ r) = P(⟨µ∗, Xa⟩ ≤ r | sa = i) for any r ∈ R, i ∈ G. Hence

we can extend the definition of group meritocratic fairness as follows.

Definition 7.7.9 (GMF policy). a policy {a∗t }∞t=1 is group meritocratic fair (GMF) if for all t ∈
N, a ∈ [K] it satisfies

F(⟨µ∗, Xt,a∗t
⟩, sa∗t ) ≥ F(⟨µ∗, Xt,a⟩, st,at) .

The fair pseudo-regret is now defined as

RF (T ) =
T∑
t=1

F(⟨µ∗, Xt,a∗t
⟩, sa∗t )−F(⟨µ∗, Xt,at⟩, sat)

We can adapt Proposition 7.1.4 to this setting as follows.

Proposition 7.7.10 (GMF policy satisfies history-agnostic demographic parity ). Let {⟨µ∗, Xa⟩}Ka=1

conditioned to {sa}Ka=1 be independent and absolutely continuous and for every a ∈ [K], t ∈ N,

let (Xt,a, st,a) be an i.i.d. copy of (Xa, sa). Then for every t ∈ N, {F(⟨µ∗, Xt,a⟩, st,a)}Ka=1 condi-

tioned to {st,a}Ka=1 are i.i.d. uniform on [0, 1] and

P(a∗t = a | st,a,H−
t−1) = 1/K ∀a ∈ [K],

for any GMF policy {a∗t }∞t=1.

Proof. Let ψa := F(⟨µ∗, Xt,a⟩, st,a). From the assumptions {ψa}Ka=1 conditioned to {st,a}Ka=1

are i.i.d random variables, independent from H−
t−1, with uniform distribution on [0, 1] (see

(Casella and Berger, 2021, Theorem 2.1.10)). Let P̃ = P(· | {st,a}Ka=1,H
−
t−1), we have that

∀a1, a2 ∈ [K]: P̃(ψa1 = ψa2) = 0, P̃(a∗t = a |H−
t−1) = P̃(a∗t = a) and

P̃(a∗t = a1) = P̃(ψa1 > ψa′ , ∀a′ ̸= a1) = P̃(ψa2 > ψa′ , ∀a′ ̸= a2) = P̃(a∗t = a2) = 1/K .

Let St,̸a = {st,a : a ∈ [K]/a}, then the statement follows from

P(a∗t = a | st,a,H−
t−1) = ESt,̸a

[P̃(a∗t = a)] .

Proposition 7.7.10 states that the probability of selecting an arm does not change based

on group membership. Fair-Greedy V2 in Algorithm 8 is the extension of the fair-greedy policy

to this new setting.
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Algorithm 8 Fair-Greedy V2

1: Requires regularization parameter λ > 0, and noise magnitude ρ ∈ (0, 1]
2: for t = 1 . . . T do
3: Receive {(Xt,a, st,a)}Ka=1

4: Set t̃ = ⌊(t− 1)/2⌋, X1:t̃ = (X1,a1 , . . . , Xt̃,at̃
)⊤, r1:t̃ = (r1,a1 , . . . , rt̃,at̃).

5: If t̃ = 0 set µt̃ = 0, else let Vt̃ := X⊤
1:t̃
X1:t̃ + λId, generate γt̃ ∼ N (0, Id) and compute

µt̃ := V −1
t̃
X⊤

1:t̃
r1:t̃ +

ρ

d
√
t̃
· γt̃ .

6: For each a ∈ [K], let i := st,a and Nt,i =
∑t−1

j=t̃+1

∑K
a′=1 1

{
sj,a′ = i

}
, compute

F̂t(⟨µt̃, Xt,a⟩, i) := N−1
t,i

t−1∑
j=t̃+1

K∑
a′=1

1
{
⟨µt̃, Xj,a′⟩ ≤ ⟨µt̃, Xt,a⟩

}
1
{
sj,a′ = i

}
.

7: Sample action
at ∼ U

[
argmax
a∈[K]

F̂t(⟨µt̃, Xt,a⟩, st,a)
]
.

8: Observe noisy reward rt,at = ⟨µ,Xt,at⟩+ ηt.
9: end for

Notice that the number of contexts used for the CDF approximation for group i ∈ [G] is

now the random variable Nt,i. Furthermore, we are now using contexts from all the arms

to estimate the CDFs, which as we will see it can improve the dependency on K in the fair

pseudo-regret bound. We observe that the information averaged demographic parity property

of Lemma 7.2.1 does not transfer directly to Fair-Greedy V2, because at each round, there

can be a different number of candidates for each group. However, as we will see, the regret is

still similar to the original case.

The following Lemma establishes an high probability lower bound on Nt,i.

Lemma 7.7.11. Let qK := mini∈[G]

∑K
a=1 P(sa = i) and let

R = 1 {∃a ∈ [K] such that ∀i ∈ [G]P(sa = i) < 1} .

R = 1 means that the sensitive attribute is random for at least one arm, while is deterministic

if R = 0. Then, let α = Rb + (1 − R) with b ∈ (0, 1) and tN := 3 + R⌈ 2
(1−α)2qK

log(GT/δ)⌉,
with Nt,i defined at Line 6 of Algorithm 8 and,without loss of generality, qK > 0. For simiplicity

we let Rx = 0 when R = 0, x = ∞. We have that with probablity at least 1 − Rδ, for every

t ∈ {tN , . . . , T}
min
i∈[G]

Nt,i ≥ (t− 1− t̃)αqK

Proof. If R = 0, then P(sa = i) = 1 {sa = i} and the result follows.
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If R = 1 instead, note that for every i ∈ [G] we have that

E[Nt,i] =
t−1∑

j=t̃−1

K∑
a=1

P(sa = i) ≥ (t− 1− t̃)qK .

Applying the Chernoff bound we have that with probability at least 1− δ, for all t > tN

Nt,i ≥ αE[Nt,i] ≥ (t− 1− t̃)αqK ,

and the statement follows

Let ST (tN , α) :=
{
{{st,a}Ka=1}Tt=1 : miniNt,i ≥ (t − t̃ − 1)αqK for all tN ≤ t ≤ T

}
be

the event when Lemma 7.7.11 is satisfied. We can then proceed the analysis assuming that

ST (tN , α) holds. Noticing that the maximum number of approximate CDFs to be computed at

each round is G we can adapt Lemma 7.7.4 as follows.

Lemma 7.7.12. Let Assumption 7.7.8(ii) hold and F̂t(r, i), and µt̃ to be generated by Algo-

rithm 8. Let Zi := ⟨µt̃, X̂i⟩ and denote with FZi(·) its CDF, conditioned on µt̃. Then, if the event

ST (tN , α) is satisfied, with probability at least 1− δ we have that for all tN ≤ t ≤ T

sup
i∈[G],r∈R

|F̂t(r, i)−FZi(r)| ≤

√
log(2GT/δ)

(t− 1)αqK
.

Then, following the steps in Lemma 7.3.2, we obtain the following bound on the instanta-

neous regret.

Lemma 7.7.13 (Instant regret bound). Let Assumption 7.7.8(ii)(iv) hold and at to be generated

by Algorithm 8. Then, if the event ST (tN , α) is satisfied, with probability at least 1− δ/4, for all

t such that tN ≤ t ≤ T we have

F(⟨µ∗, Xt,a∗t
⟩, sa∗t )−F(⟨µ∗, Xt,at⟩, sat) ≤ 6M ∥µ∗ − µt̃∥Vt̃

∥xmax∥V −1
t̃

+ 2

√
log(16GT/δ)

(t− 1)αqK
,

where ∥xmax∥V −1
t̃

:= supx∈∪G
i=1Supp(X̂i)

∥x∥V −1
t̃

.

Proof sketch. Uses the decomposition in the proof of Lemma 7.3.2, then Lemma 7.7.12 and

a version of Lemma 7.3.1 adapted to this more general setting.

We can bound ∥µ∗ − µt̃∥Vt̃
using the confidence bounds in OFUL (Abbasi-Yadkori et al.,

2011). To bound ∥xmax∥V −1
t̃

instead, we first provide an adaptation of Proposition 7.3.3, which

guarantees sufficient exploration of all arms. The proof is very similar to that of Proposi-

tion 7.3.3 and we report it here for completeness.

Proposition 7.7.14. Let Assumption 7.1.6 hold, at be generated by Algorithm 7 and c ∈ [0, 1).

Then, if ST (tN , α) is satisfied, with probability at least 1 − δ/4 , for all a ∈ [K] and all t ≥
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max
(
tN , 3 + 8 log3/2

(
5G e/δ

)(
1− K

√
c
)−3

(qKα)
−3/2

)
we have

P(at = a | st,a,H−
t−1) ≥

c

K
,

where we recall that H−
t = ∪t

i=1

{
{(Xi,a, si,a)}Ka=1, ri,ai , ai

}
.

Proof. Recall the definition of Algorithm 8. For any a ∈ [K] let r̂t,a = µ⊤
t̃
Xt,a, which is the esti-

mated reward for arm a, at round t. Note that µt̃ and Xt,a are independent random variables.

Furthermore, denote with Fr̂t,a(·, st,a) the CDF of r̂t,a conditioned on µt̃ and st,a, and let

ϕt,a := Fr̂t,a(r̂t,a, st,a) , and ϕ̂t,a := F̂t(r̂t,a, st,a) .

Let Ct := argmaxa∈[K] ϕ̂t,a. Now, by the definition of the algorithm, we have

P(at = a | {st,a}Ka=1,H−
t−1) =

K∑
m=1

1

m
P(a ∈ Ct, |Ct| = m |H−

t−1) ,

Let ϵt > 0 and P̃(·) = P(· | {st,a}Ka=1,H
−
t−1, supa∈[K] |ϕt,a − ϕ̂t,a| ≤ ϵt). Then, we can write

P̃(at = a) ≥ P̃(ϕ̂t,a > ϕ̂t,a′ , ∀a′ ̸= a) ≥ P̃(ϕt,a > ϕt,a′ + 2ϵt , ∀ a′ ̸= a) ,

where in the first inequality we considered the case when a ∈ Ct and |Ct| = 1. In the second

inequality we considered the worst case scenario where ϕ̂t,a = ϕt,a − ϵt and ϕ̂t,a′ = ϕt,a′ + ϵt.

Recall that by the construction of the algorithm µt̃ = V −1
t̃
X⊤

1:t̃
r1:t̃ + (1/

√
dt̃) · γt̃. for all i ∈ [G],

the additive noise (1/
√
dt̃)γt̃ assures that µ⊤

t̃
Bi ̸= 0, almost surely. Therefore, by Lemma 7.7.1

r̂t,a = ⟨µt̃, Xt,a⟩ conditioned on µt̃ is absolutely continuous.

assumption 7.1.6(iii) and (Casella and Berger, 2021, Theorem 2.1.10) yield that {ϕt,a}a∈[K]

conditioned to {st,a}Ka=1 are independent and uniformly distributed on [0, 1] and in turn that

P̃(at = a) ≥
∫ 1

0

(
P(ϕt,a′ < µ−2ϵt)

)K−1
dµ =

∫ 1

2ϵt

(µ−2ϵt)
K−1 dµ =

(1−2ϵt)
K

K
. (7.12)

We continue by computing an ϵt for which supa∈[K] |ϕt,a − ϕ̂t,a| ≤ ϵt holds with high probability.

Observing that, conditioned on µt̃ and {st,a}Ka=1, F̂t,a(·, st,a) is the empirical CDF of Fr̂t,a(, st,a),

we can use Lemma 7.7.11 and the Dvoretzky–Kiefer–Wolfowitz-Massart inequality to obtain,

for any a ∈ [K], t ≥ tN , and s ≥ 0

P
(
|ϕt,a − ϕ̂t,a| ≥ s

)
≤ 2 exp

(
−2s2(t− t̃− 1)(αqK)

)
.

Now, let τ0 := max
(
tN , 3 + 8 log3/2

(
5G e/δ

)(
1 − K

√
c
)−3

(αqK)−3/2
)
. By applying the union
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bound and noticing that we have max of G CDFs and approximate CDFs, we can write

P

(
sup

t≥τ0,a∈[K]
|ϕt,a − ϕ̂t,a| ≥ s

)
≤ G

∞∑
t=τ0

P
(
|ϕt,a − ϕ̂t,a| ≥ s

)
≤ 2G

∞∑
t=τ0

exp
(
−2s2(t− t̃− 1)(αqK)

)
.

Since t̃ = ⌊ t−1
2 ⌋, it is straightforward to check that

P

(
sup

t≥τ0,a∈[K]
|ϕt,a − ϕ̂t,a| ≥ s

)
≤ 2G

∫ ∞

t=τ0−1
exp

(
−s2αqKt

)
dt

≤ 2G

αqKs2
exp

(
−s2αqK(τ0 − 1)

)
.

Now, for any δ ∈ (0, 1), by assigning s =
√

log(4G(τ0−1)/δ)
(τ0−1)αqK

, we get

P

(
sup

t≥τ0,a∈[K]
|ϕt,a − ϕ̂t,a| ≥

√
log(4G(τ0 − 1)/δ)

(τ0 − 1)αqK

)
≤ δ

2 log (4G(τ0 − 1)/δ)
≤ δ

4
, (7.13)

where from τ0 ≥ 3, δ < 1 =⇒ 4G(τ0 − 1)/δ ≥ 8 ≥ e2 =⇒ log (4G(τ0 − 1)/δ) ≥ 2 we obtain

the last inequality. From (7.12), it follows that

inf
t≥τ0,a∈[K]

P
(
at = a|{st,a}Ka=1,H−

t−1

)
≥

(1− 2 supt≥τ ϵt)
K

K
.

Moreover, form (7.13), by letting ϵt =
√

log(4G(τ0−1)/δ)
(τ0−1)αqK

, with probability at least 1− δ
4 , we have

inf
t≥τ,a∈[K]

P
(
at = a|{st,a}Ka=1,H−

t−1

)
≥ 1

K

1− 2

√√√√√ log(4G(τ0 − 1)/δ)

(τ0 − 1)αqK︸ ︷︷ ︸
(I)


K

. (7.14)

For the term (I) in the above, using log(x) ≤ log(5 e/4)x1/3 and x ≥ x2/3 for any x ≥ 1 we

deduce that

(I) =
log(4G/δ) + log(τ0 − 1)

(τ0 − 1)αqK
≤ log(4G/δ) + log(5 e/4)

(τ0 − 1)2/3αqK
=

log(5G e/δ)

(τ0 − 1)2/3αqK
.

Now, since τ0 ≥ 3 + 8 log3/2
(
5G e/δ

)(
1− K

√
c
)−3

(αqK)−3/2, we get that (I) ≤ 1
4 (1− K

√
c)

2 and

conclude the proof by plugging this inequality in (7.14).

Furthermore, for fixed t, let Ẽ = E[· |H−
t−1] and P̃ = P[· |H−

t−1]. Note that if the assumptions
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of Proposition 7.7.14 are satisfied, then

Ẽ[Xt,atX
⊤
t,at ] =

G∑
i=1

E[X̂iX̂
⊤
i ]P̃(st,at = i)

=
G∑
i=1

E[X̂iX̂
⊤
i ]

K∑
a=1

P̃(at = a | st,a = i)P̃(st,a = i)

≥ cK−1
G∑
i=1

E[X̂iX̂
⊤
i ]qK = c

qKG

K

1

G

G∑
i=1

E[X̂iX̂
⊤
i ] (7.15)

where we applied Proposition 7.7.14 in the last line. We can bound ∥xmax∥V −1
t̃

in Lemma 7.7.13

in the same way as in Lemma 7.7.6 using (7.15) with c = 1/2 when needed in the proof of

Lemma 7.7.5. Combining the previous results we obtain the following regret bound.

Theorem 7.7.15. Let Assumption 7.7.8 hold, at be generated by Algorithm 8 and Σ :=

G−1
∑G

i=1 E[X̂iX̂
⊤
i ] Then, with probability at least 1− δ, for any T ≥ 1 we have

RF(T ) ≤
96ML

√
K√

λ+min(Σ)qKG

[
(λ

1
2 +R+ L)

√
dT log((8 + 4T max(L2/λ, 1))/δ1) +

√
λT ∥µ∗∥2

]

+ 8

√
T log(8GT/δ1)

3αqK
+ τ ,

where δ = δ1 +Rδ2, τ = 4max(τ1, τ2,Rτ3) + 3 and

τ1 =
32K3

(αqK)3/2
log3/2

(
5G e/δ1

)
, τ2 =

54L2

λ+min(Σ)
log(4d/δ1), τ3 =

2

(1− α)2qK
log(GT/δ2),

where qK , R and α are defined in Lemma 7.7.11 and we use the convention Rτ3 = 0 if

R = 0, τ3 = ∞. Hence

RF(T ) = O

(
R log(GT/δ2)

qK
+
K3 log3/2(G/δ1)

q
3/2
K

+

√
dT log (GT/δ1)

(1 +G/K)qK)

)
.

Proof Sketch. First, assume ST (tN , α) holds and use a similar strategy of Theorem 7.3.5 to

get a bound w.p. at least 1− δ1. Then combine this result with Lemma 7.7.11.

Notice that in the case where each arm corresponds to a different sensitive group, i.e.

when G = K, sa = a and therefore qK = 1, R = 0 and α = 1, we recover Theorem 7.3.5.

Moreover, we have the following corollary which shows an advantage for higher number of

arms compared to the bound in Theorem 7.3.5 when {(Xa, sa)}Ka=1 are i.i.d..

Corollary 7.7.16. Let {(Xa, sa)}Ka=1 be i.i.d. and qmin := mini∈[G] P(sa = i)G. If Assump-

tion 7.7.8 holds and at is generated via Algorithm 8 we have that with probability at least 1− δ,
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for any T ≥ 1 and α ∈ (0, 1) we have that

RF(T ) ≤
96ML√

λ+min(Σ)qmin

[
(λ

1
2 +R+ L)

√
dT log((8 + 4T max(L2/λ, 1))/δ1) +

√
λT ∥µ∗∥2

]

+ 8

√
TG log(8GT/δ1)

3Kαqmin
+ τ ,

where δ = δ1 + δ2, τ = 4max(τ1, τ2, τ3) + 3 and

τ1 =
32(KG)3/2

(αqmin)3/2
log3/2

(
5G e

δ1

)
, τ2 =

54L2

λ+min(Σ)
log

(
4d

δ1

)
, τ3 =

2G

(1− α)2Kqmin
log

(
GT

δ2

)
.

Hence

RF(T ) = O

(
G log(GT/δ)

Kqmin
+

(KG)3/2 log3/2(G/δ)

q
3/2
min

+

√
dT log (GT/δ)

(1 +K/G)qmin)

)

Note that in Corollary 7.7.16, qmin > 0 without loss of generality and qmin = 1 if and only if

each group has the same probability of being sampled. Furthermore qmin/G is the probability

that a context belongs to the less common group, which depends on the problem at hand.

Note that there is an advantage compared to Theorem 7.3.5 in terms of number of arms when

K > G. This is because context coming from all arms can be use to estimate the CDF of a

given group.

Additional details on the US census experiments

This experiment is introduced in Section 7.5 and similarly to that of Section 7.7, is performed

using the US Census data. However, candidates are sampled from the original dataset at

random together with their sensitive group (their ethnicity). Hence, we use Fair-greedy V2

(Algorithm 8). Differently from Section 7.7 where we use the target income as noisy reward,

here we add artificial noise with standard deviation 0.2 directly to the true reward.

Setup and Preprocessing. To setup the bandit problem, we construct two datasets: D1

and D2. We first load all the data from the 2017 US Census Survey to assemble D1, and

then from the 2018 survey to assemble D2. Then we retain only candidates from 6 ethnic

groups containing at least 5 × 103 candidates, in order to accurately compute the true CDF

for each group. We use D1 to find mean and standard deviation for each feature and also

for the target. After that we normalize features and target of D2 by subtracting the mean and

dividing by the standard deviation previously computed on D1. We then construct µ∗ as a

ridge regression estimate on the samples from D2 with the regularization parameter equal to

10−8. The regression vector µ∗ will be used to compute the (true) rewards for the samples.

We construct the bandit problem as follows. At each round, the context vectors of K = 10

individual are sampled from D2 and after one is selected by the policy, its corresponding noisy
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Figure 7.4: US Census Results. Group = Ethnicity. First image is the density plots of the reward
distributions, the second image is the number candidates (in log scale) from each group which are
selected by each policy (mean and std over 10 runs), while the bottom two plots are the standard and
fair pseudo-regrets, with mean (solid lines) ± standard deviation (shaded region) over 10 runs. To
compute the reward CDF for each group we use the empirical CDF on 5K samples from D2.

reward, obtained by adding gaussian noise with standard deviation 0.2 to the true reward, is

received by the agent.

Baselines. We compare our method with the same baselines as in Section 7.7, where the

two oracle policies are now variants of Fair-Greedy V2. Moreover, we set the regularization

parameter for all policies using a ridge estimate to 0.1 and the exploration parameter of OFUL

to 0.01.

Results (Figure 7.4). We draw similar conclusions as in Section 7.7. In particular, Greedy

performing better than OFUL and the Fair-Greedy policy achieving sublinear fair pseudo-

regret, but worse than Oracle methods. Additionaly we can see that knowing µ∗ plays a more

important role than knowing the true reward CDFs. In this case, the gap between the Uniform

random policy and the others is even larger since K = 10. Moreover, as expected, Fair-
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greedy selects more candidates from underperforming (in terms of reward) minority groups,

when compared with OFUL and Greedy.

Trade off between fairness and reward maximization

In this section, we show for which problems the GMF policy and the optimal policy have com-

peting goals. in particular, for the case of K = 2, when the rewards are absolutely continuous

and independent across arms, whenever they are not identically distributed, the GMF policy

achieves linear standard pseudo-regret with nonzero probability. The following theorem proves

this result.

Theorem 7.7.17. Let Assumption 7.1.6 hold with K = 2, and assume that F1 ̸= F2. Let

r̄t,a := ⟨µ∗, Xt,a⟩, {a∗t }Tt=1 be the GMF policy (see Definition 7.1.1) and {aopt
t }Tt=1 be the optimal

policy (see Remark 7.1.3). Then, there exists ϵ > 0, such that

p =

∫ 1

0

[
max(F1(F−1

2 (y)− ϵ)− y, 0) + max(y −F1(F−1
2 (y) + ϵ), 0)

]
dy > 0 .

Furthermore with probability at least ϵp
4L∥µ∗∥ , for any T > 0, we have

T · ϵp
2

≤
T∑
t=1

[
r̄
t,a

opt
t

− r̄t,a∗t
]
.

Proof. Let r̄a := ⟨µ∗, Xa⟩, qa = Fa(ra) be the CDF value of ra and F−1
a be the quantile function,

i.e. such that F−1
a (x) = inf{y ∈ R : x ≤ Fa(y)}. For ϵ > 0 consider the set Eϵ := Eϵ

1 ∪ Eϵ
2

where

Eϵ
1 := {(x, y) ∈ [0, 1]2 : x > y,F−1

1 (x) < F−1
2 (y)− ϵ} ,

Eϵ
2 := {(x, y) ∈ [0, 1]2 : x < y,F−1

1 (x) > F−1
2 (y) + ϵ} .

Note that we can write

Eϵ
1 = {(x, y) ∈ [0, 1]2 : y < x < F1(F−1

2 (y)− ϵ)} ,

Eϵ
2 = {(x, y) ∈ [0, 1]2 : F1(F−1

2 (y) + ϵ) < x < y} .

Now, let g1,2(y, ϵ) = F1(F−1
2 (y) + ϵ). Since from Assumption 7.1.6(ii)(iv), q1 an q2 are i.i.d
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uniform on [0, 1] we have that

P((q1, q2) ∈ Eϵ) = P((q1, q2) ∈ Eϵ
1) + P((q1, q2) ∈ Eϵ

2)

=

∫ 1

0

∫ g1,2(y,−ϵ)

y
dxdy +

∫ 1

0

∫ y

g1,2(y,ϵ)
dxdy

=

∫ 1

0
max(g1,2(y,−ϵ)− y, 0)dy +

∫ 1

0
max(y − gϵ1,2(y, ϵ), 0)dy

=

∫ 1

0

[
max(F1(F−1

2 (y)− ϵ)− y, 0) + max(y −F1(F−1
2 (y) + ϵ), 0)

]
dy .

Since F1 ̸= F2, and F1,F2 are absolutely continuous, there exists ϵ′ > 0, such that F−1
2 (y)−

F−1
1 (y) > ϵ′, or F−1

2 (y) − F−1
1 (y) < ϵ′ for y inside a closed interval, and hence P((q1, q2) ∈

Eϵ′) > 0. This concludes the proof by letting ϵ = ϵ′, and p = P((q1, q2) ∈ Eϵ).

Now, let qt,a = Fa(r̄t,a), then for the expected value of the instantaneous standard regret,

at round t, we can write

E
[
r̄
t,a

opt
t

− r̄t,a∗t
]
≥
∫
(x,y)∈Eϵ

|F−1
2 (y)−F−1

1 (x)|dx dy ≥ ϵP((qt,1, qt,2) ∈ Eϵ) = ϵp > 0 ,

and for the standard regret, we have

T∑
t=1

E
[
r̄
t,a

opt
t

− r̄t,a∗t
]
≥ T · ϵp > 0 .

Finally, let Ω be the event that 1
2 ·
∑T

t=1 E
[
r̄
t,a

opt
t

− r̄t,a∗t
]
≤
∑T

t=1[r̄t,aopt
t

− r̄t,a∗t ]. Considering the

fact that
∑T

t=1[r̄t,aopt
t

− r̄t,a∗t ] ≤ 2L ∥µ∗∥T , we deduce

T∑
t=1

E[r
a

opt
t

− r̄t,a∗t ] =
T∑
t=1

[
E[r̄

t,a
opt
t

− r̄t,a∗t |Ω]P(Ω) + E[r̄
t,a

opt
t

− r̄t,a∗t |Ω
c]P(Ωc)

]
≤ 2L ∥µ∗∥TP(Ω) +

T∑
t=1

E[r̄
t,a

opt
t

− r̄t,a∗t ]/2 ,

and we get ϵp
4L∥µ∗∥ ≤

∑T
t=1 E[r̄t,aopt

t
− r̄t,a∗t ]/(4L ∥µ∗∥T ) ≤ P(Ω), which finishes the proof.

Remark 7.7.18. In Theorem 7.7.17, ϵ ≤ 2L ∥µ∗∥, otherwise p = 0. On the other hand, by the

definition p ≤ 1, and accordingly ϵp
4L∥µ∗∥ ≤ 1/2.

Remark 7.7.19. With similar reasoning as in the proof of Theorem 7.7.17, we can show that

if F1 ̸= F2 the optimal policy (see Remark 7.1.3) has linear fair pseudo-regret with positive

probability, that is independent of T . In particular, there exist c, c′ > 0, such that for any T > 0,

P(T · c′ ≤
∑T

t=1[Fa∗t
(r̄t,a∗t )−F

a
opt
t
(r̄

t,a
opt
t
)]) > c.

Example 7.7.20 (Disjoint supports). As an example consider the case when K = 2 and

r̄t,1 − r̄t,2 ≥ ϵ > 0, for all t ≥ 1, almost surely. Then, F1(F−1
2 (y)− ϵ) = F1(F−1

2 (y) + ϵ) = 0 for
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every y ∈ [0, 1]. Hence we have

p =

∫ 1

0

[
max(F1(F−1

2 (y)− ϵ)− y, 0) + max(y −F1(F−1
2 (y) + ϵ), 0)

]
dy = 1/2 .

Then by Theorem 7.7.17, with probability at least ϵ
8L∥µ∗∥ , for any T > 0, we have

∑T
t=1[r̄t,aopt

t
−

r̄t,a∗t ] ≥
Tϵ
4 .
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Résumé: Dans cette thèse, nous étu-
dions d’abord le problème de l’optimisation
d’ordre zéro dans le cadre actif pour des
fonctions lisses et trois classes différentes
de fonctions : i) les fonctions qui satis-
font la condition de Polyak-Łojasiewicz, ii)
les fonctions fortement convexes, et iii) la
classe plus large des fonctions non con-
vexes fortement lisses. De plus, nous pro-
posons un nouvel algorithme basé sur la
randomisation de type ℓ1, et nous étudions
ses propriétés pour les fonctions convexes
Lipschitz dans un cadre d’optimisation en
ligne. Notre analyse est due à la dérivation
d’une nouvelle inégalité de type Poincaré
pour la mesure uniforme sur la sphère ℓ1
avec des constantes explicites.
Ensuite, nous étudions le problème
d’optimisation d’ordre zéro dans les sché-

mas passifs. Nous proposons une nou-
velle méthode pour estimer le minimiseur
et la valeur minimale d’une fonction de
régression lisse et fortement convexe f .
Nous dérivons des limites supérieures pour
cet algorithme et prouvons des limites in-
férieures minimax pour un tel cadre.
Enfin, nous étudions le problème du ban-
dit contextuel linéaire sous contraintes
d’équité où un agent doit sélectionner un
candidat dans un pool, et où chaque candi-
dat appartient à un groupe sensible. Nous
proposons une nouvelle notion d’équité qui
est pratique dans l’exemple susmentionné.
Nous concevons une politique avide qui
calcule une estimation du rang relatif de
chaque candidat en utilisant la fonction de
distribution cumulative empirique, et nous
prouvons sa propriété optimale.
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Abstract: In this thesis, we first study the
problem of zero-order optimization in the
active setting for smooth and three differ-
ent classes of functions: i) the functions that
satisfy the Polyak-Łojasiewicz condition, ii)
strongly convex functions, and iii) the larger
class of highly smooth non-convex func-
tions. Furthermore, we propose a novel al-
gorithm that is based on ℓ1-type randomiza-
tion, and we study its properties for Lips-
chitz convex functions in an online optimiza-
tion setting. Our analysis is due to deriving
a new Poincaré type inequality for the uni-
form measure on the ℓ1-sphere with explicit
constants.
Then, we study the zero-order optimization
problem in the passive schemes. We pro-

pose a new method for estimating the min-
imizer and the minimum value of a smooth
and strongly convex regression function f .
We derive upper bounds for this algorithm
and prove minimax lower bounds for such a
setting.
In the end, we study the linear contextual
bandit problem under fairness constraints
where an agent has to select one candi-
date from a pool, and each candidate be-
longs to a sensitive group. We propose a
novel notion of fairness which is practical
in the aforementioned example. We design
a greedy policy that computes an estimate
of the relative rank of each candidate using
the empirical cumulative distribution func-
tion, and we proved its optimal property.
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